Multilabel Rule Learning

多标签规则学习

基本信息

项目摘要

Inductive rule learning is a very traditional, well-established resaerch area in machine learning. Rule learning algorithms are typically employed when one is not only interested in accurate predictions but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing the patterns and regularities that are implicitly captured in the data, a rule-based theory yields new insights in the application domain. On the other hand, in many machine learning tasks, predictions are sought for multiple target variables simultaneously, a problem known as multi-target prediction. Multilabel classification, where all output variables are binary, is an important special case. State-of-the-art methods in this area are able to improve performance by taking dependencies between these output variables into account. However, only little work has been done in learning explicit representations of such dependencies, which is a worth-while data mining task in itself.We are convinced that a rule-based view of this problem will greatly enhance our understanding and lead to better practical solutions. The main goal of this project is thus to connect research in multilabel classification and inductive rule learning, and to develop scalable rule learning algorithms for multilabel classification. Working in the intersection of two research areas in machine learning, we will make contributions to bothfields. At a very high level, the objectives of this project are thus (i) to develop a unified framework for representing different types of label dependencies, and analyze its expressive power for multilabel classification problems, (ii) to face the algorithmic challenges of learning multilabel rule sets from data, and (iii) to evaluate the predictive and descriptive performance of such rules in comparison to state-of-the-art systems.
归纳规则学习是机器学习中一个非常传统、成熟的研究领域。规则学习算法通常在人们不仅对准确的预测感兴趣,而且还需要领域专家可以理解,分析和定性评估的可解释理论时使用。理想情况下,通过揭示数据中隐式捕获的模式和错误,基于规则的理论在应用领域产生新的见解。另一方面,在许多机器学习任务中,同时寻求对多个目标变量的预测,这就是所谓的多目标预测问题。所有输出变量都是二进制的多标签分类是一个重要的特例。该领域的最先进的方法能够通过考虑这些输出变量之间的依赖关系来提高性能。然而,只有很少的工作已经做了学习这种依赖关系的显式表示,这是一个复杂的,而数据挖掘task本身,我们相信,基于规则的观点,这个问题将大大提高我们的理解,并导致更好的实际解决方案。因此,这个项目的主要目标是连接多标签分类和归纳规则学习的研究,并开发可扩展的多标签分类规则学习算法。在机器学习的两个研究领域的交叉点工作,我们将为两个领域做出贡献。在一个非常高的水平上,这个项目的目标是(i)开发一个统一的框架来表示不同类型的标签依赖关系,并分析其对多标签分类问题的表达能力,(ii)面对从数据中学习多标签规则集的算法挑战,以及(iii)评估这些规则的预测和描述性能,与最先进的系统相比。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient-based Label Binning in Multi-label Classification
  • DOI:
    10.1007/978-3-030-86523-8_28
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Rapp;E. Mencía;Johannes Fürnkranz;Eyke Hüllermeier
  • 通讯作者:
    Michael Rapp;E. Mencía;Johannes Fürnkranz;Eyke Hüllermeier
Conformal Rule-Based Multi-label Classification
基于共形规则的多标签分类
  • DOI:
    10.1007/978-3-030-58285-2_25
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hüllermeier;Fürnkranz;Loza Mencía
  • 通讯作者:
    Loza Mencía
Reliable Multi-label Classification: Prediction with Partial Abstention
  • DOI:
    10.1609/aaai.v34i04.5972
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vu-Linh Nguyen;Eyke Hüllermeier
  • 通讯作者:
    Vu-Linh Nguyen;Eyke Hüllermeier
On the Trade-off Between Consistency and Coverage in Multi-label Rule Learning Heuristics
  • DOI:
    10.1007/978-3-030-33778-0_9
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Rapp;E. Mencía;Johannes Fürnkranz
  • 通讯作者:
    Michael Rapp;E. Mencía;Johannes Fürnkranz
Rule-Based Multi-label Classification: Challenges and Opportunities
  • DOI:
    10.1007/978-3-030-57977-7_1
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eyke Hüllermeier;Johannes Fürnkranz;E. Mencía;Vu-Linh Nguyen;Michael Rapp
  • 通讯作者:
    Eyke Hüllermeier;Johannes Fürnkranz;E. Mencía;Vu-Linh Nguyen;Michael Rapp
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Eyke Hüllermeier其他文献

Professor Dr. Eyke Hüllermeier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Eyke Hüllermeier', 18)}}的其他基金

Data-Driven Design of Evolving Fuzzy Systems: Enhancing Interpretability, Reliability, and User-Interaction
演化模糊系统的数据驱动设计:增强可解释性、可靠性和用户交互
  • 批准号:
    139695254
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modellieren, Lernen und Verarbeiten von Erfahrungswissen im Case-Based Reasoning auf der Grundlage präferenzbasierter Methoden - Präferenzbasiertes CBR
基于偏好的方法对案例推理中的经验知识进行建模、学习和处理——基于偏好的CBR
  • 批准号:
    170049638
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Lernen von Fuzzy-Präferenzmodellen: Methoden und Anwendungen in personalisierten Informationssystemen
学习模糊偏好模型:个性化信息系统中的方法和应用
  • 批准号:
    5434296
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Remaining Useful Lifetime for New and Used Technical Systems under Non-Stationary Conditions
非静止条件下新旧技术系统的剩余使用寿命
  • 批准号:
    451737409
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Investment Accelerator
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
  • 批准号:
    2349670
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Improving flexibility and performance of the Acute Care Enhanced Surveillance (ACES) System for public health surveillance: an ensemble of state-of-the-art machine learning and rule-based natural language processing methods
提高用于公共卫生监测的急性护理增强监测 (ACES) 系统的灵活性和性能:最先进的机器学习和基于规则的自然语言处理方法的集合
  • 批准号:
    468864
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Development of Adaptive Learning Support Robot Service Ennvironment with Multimodal Multilayered Rule-base
多模态多层规则库自适应学习支持机器人服务环境的开发
  • 批准号:
    22K02664
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interpretable and explainable rule-based modeling: analysis, design, and evaluation in the framework of Granular Computing and federated learning
可解释和可解释的基于规则的建模:粒度计算和联邦学习框架中的分析、设计和评估
  • 批准号:
    RGPIN-2022-03045
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
  • 批准号:
    2047176
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Rule-based machine learning to address heterogeneity in high-dimensional survival data
基于规则的机器学习解决高维生存数据的异质性
  • 批准号:
    10478828
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Follow on Deployment and Development of a Machine Learning/AI Cancer Rule-Out Test for the NHS Two Week Wait Pathway
跟进 NHS 两周等待途径的机器学习/人工智能癌症排除测试的部署和开发
  • 批准号:
    830203
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Innovation Loans
Machine learning from incomplete information table by rule generation and its application
不完全信息表的机器学习规则生成及其应用
  • 批准号:
    20K11954
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining the implicit and rule-based learning ability of individuals with aphasia to better align learning ability and intervention
确定失语症患者的内隐学习能力和基于规则的学习能力,以更好地协调学习能力和干预
  • 批准号:
    10532767
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了