Interpretable and explainable rule-based modeling: analysis, design, and evaluation in the framework of Granular Computing and federated learning

可解释和可解释的基于规则的建模:粒度计算和联邦学习框架中的分析、设计和评估

基本信息

  • 批准号:
    RGPIN-2022-03045
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Introduction With the heightened complexity of real-world systems and their advanced models, distributed sources of data, and increased expectations of the users, the quest for interpretable and explainable models. It becomes of paramount importance exhibiting tangible benefits, especially in system modeling and decision making in critical environments. Explainable system modeling is about developing models aimed at producing transparent knowledge about relationship existing in data/models and helping explain and audit prediction/classification results. The proposed Discovery Grant program is aimed at addressing the challenges of federated learning of explainable models with distributed data, analyzing innovative ways of evaluation of their performance and developing associated original methodologies and solutions. Objectives and originality We pursue a research program aimed at building a novel and efficient environment for designing and analyzing interpretable models such that they (i) possess sound and legitimate abstraction capabilities, (ii) exhibit the logic fabric of their structures, and (iii) are endowed with semantically sound mechanisms of evaluation of performance of the interpretable models and their results. We analyze how that these essential modeling features are efficiently realized with the aid of information granules (sets, fuzzy sets, rough sets) and how interpretable models can be constructed, studied and evaluated with the aid of Granular Computing. We design and evaluate quality of information granules regarded as building blocks fundamental to the formation of interpretable models. We develop new generalized techniques of data clustering essential to the formation of information granules. We construct and analyze innovative and efficient ways of federated learning of rule-based models. We establish efficient ways of assessing quality of interpretable models by engaging information granules of higher type. We open pioneering and far-reaching avenues of exploration of ways of assessing relevance of models through mechanisms of Granular Computing. Significance The research program will deliver substantive outcomes: Advancing fundamental knowledge via (i) breakthrough discoveries in Granular Computing and granular modeling. These discoveries open a new uncharted territory of the theory of advanced system modeling, concepts of explainability and a comprehensive evaluation environment, (ii) establishing new directions of granular explainable modeling, federated learning and evaluation of performance of models, (iii) exploring novel and transformative concepts of information granules, and (iv) analyzing and delivering quantifiable ways of evaluating granular results. Forming a range of original and transformative algorithms and design guidelines to tackle practical problems in system modeling, prediction, decision-making, and classification thus addressing the timely quest for advancements in complex system modeling.
随着现实世界系统及其高级模型的高度复杂性、分布式数据源以及用户对可解释和可解释模型的更高期望的增加而引入。它变得非常重要,显示出切实的好处,特别是在关键环境中的系统建模和决策制定方面。可解释的系统建模是关于开发模型,旨在产生关于数据/模型中存在的关系的透明知识,并帮助解释和审计预测/分类结果。拟议的发现资助计划旨在解决联合学习具有分布式数据的可解释模型的挑战,分析评估其性能的创新方法,并开发相关的原创方法和解决方案。目标和原创性我们追求的研究计划旨在建立一个新颖而有效的环境来设计和分析可解释模型,使其(I)具有合理和合法的抽象能力,(Ii)展示其结构的逻辑结构,以及(Iii)被赋予对可解释模型及其结果的性能进行语义评估的良好机制。我们分析了如何借助信息粒(集合、模糊集、粗糙集)有效地实现这些基本建模特征,以及如何借助粒计算来构造、研究和评估可解释模型。我们设计和评估信息颗粒的质量,将其视为形成可解释模型的基础。我们开发了新的通用数据聚类技术,这些技术对于信息颗粒的形成至关重要。构建并分析了创新高效的基于规则的联合学习方法。通过引入更高类型的信息颗粒,我们建立了评估可解释模型质量的有效方法。我们开辟了开拓性和深远的途径,探索通过粒计算机制评估模型相关性的方法。意义该研究计划将带来实质性成果:通过(I)粒计算和粒建模方面的突破性发现促进基础知识的发展。这些发现开辟了高级系统建模理论、可解释性概念和综合评估环境的新的未知领域,(Ii)建立了粒度可解释建模、联合学习和模型性能评估的新方向,(Iii)探索了新的和变革性的信息颗粒概念,以及(Iv)分析和提供了评估粒度结果的量化方法。形成一系列具有原创性和变革性的算法和设计指南,以解决系统建模、预测、决策和分类方面的实际问题,从而解决在复杂系统建模方面及时寻求进步的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedrycz, Witold其他文献

Selecting Discrete and Continuous Features Based on Neighborhood Decision Error Minimization
基于邻域决策误差最小化的离散和连续特征选择
Key Points Estimation and Point Instance Segmentation Approach for Lane Detection
Granular data imputation: A framework of Granular Computing
粒度数据插补:粒度计算框架
  • DOI:
    10.1016/j.asoc.2016.05.006
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Pedrycz, Witold;Wang, Dan;Li, Lina;Li, Zhiwu
  • 通讯作者:
    Li, Zhiwu
Robust Multi-Linear Fuzzy SVR Designed With the Aid of Fuzzy C-Means Clustering Based on Insensitive Data Information
  • DOI:
    10.1109/access.2020.3030083
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wang, Zheng;Yang, Cheng;Pedrycz, Witold
  • 通讯作者:
    Pedrycz, Witold
An efficient accelerator for attribute reduction from incomplete data in rough set framework
粗糙集框架中不完整数据属性约简的高效加速器
  • DOI:
    10.1016/j.patcog.2011.02.020
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Qian, Yuhua;Liang, Jiye;Pedrycz, Witold;Dang, Chuangyin
  • 通讯作者:
    Dang, Chuangyin

Pedrycz, Witold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedrycz, Witold', 18)}}的其他基金

Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Granular fuzzy models as a new paradigm of system modeling
粒度模糊模型作为系统建模的新范式
  • 批准号:
    42117-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
A Granular Computing Methodology to Improve Record Quality for Master Data Management
提高主数据管理记录质量的精细计算方法
  • 批准号:
    462980-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Strategic Projects - Group
Computational Intelligence
计算智能
  • 批准号:
    CRC-2014-00130
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Linkage Projects
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
  • 批准号:
    23K25698
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
  • 批准号:
    24K20795
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
  • 批准号:
    EP/Y015894/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Fellowship
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Y03743X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了