Electronic-Photonic Integrated Digital-to-Analogue Converter

电子光子集成数模转换器

基本信息

项目摘要

In the EPIDAC project, we want to develop novel concepts, which massively improve the performance of digital-to-analogue converters (DACs). The improvement is enabled by implementing the bit paths, the combination of the bit paths, the time-interleaving, and/or the clock in the optical domain. We tackle the issue that e.g. due to linearity and electron velocity boundaries in modern scaled silicon processes, the performances of DACs can not be improved much anymore. The performance of electrical DACs is limited by bandwidth issues, since e.g. for the bit generation, a high numberof paths (e.g. 17 cells for a segmented 6-bit DAC) have to be combined at the output, thereby massively increasing the capacitive parasitics. If the bit paths are combined in the optical domain, we only need a simple one-path transimpedance amplifier (TIA) after the photo diode for the back-transformation into the electronic domain. Hence, higher bandwidth is possible. Moreover, compared to electrical approaches, interleaving can be implemented with lower losses and higher accuracy. The resolution of electrical DACs is limited by timing misalignments. By using externally fed mode-locked laser clock signals with jitter values much lower than what can be achieved with electrical oscillators, the misalignment can be reduced and thereby the resolution increased. Our conceptual pre-studies show that with our electro-optical approach it should be possible to achieve a resolution of 7 effective bits at a bandwidth of 80 GHz. Compared to the state of the art this would increase the resolution by a factor of 4 and the bandwidth by a factor of 2, thereby improving the associated figure of merit by a factor of 8. This will e.g. pave the way for next generation communication systems, measurement devices, and arbitrary waveform generators. For the device realization and electro-optical integration, we apply as basis the EPIC SiGe SG25H4 technology of IHP featuring e.g. a library of optical components as well as BiCMOS transistors with 220 GHz maximum frequency of oscillation. Our key tasks include: System modelling, design and optimisation of optically-assisted DACs including theoretical aspects; development, optimisation and hardware realisation of the required integrated optical components (e.g. photo detectors, segmented modulators, couplers and waveguides) and electrical circuits (e.g. TIAs, modulator drivers, calibration circuits, and depending on the architecture DAC sub-cores); and electro-optical co-integration of the key blocks. EPIDAC combines the complementary competences of Frank Ellinger (h ≥ 28) of TU Dresden in high-frequency circuit design and communications and Lars Zimmermann (h ≥ 20) of IHP in high-speed photonics and electrical-optical integration.
在EPIDAC项目中,我们希望开发新的概念,以极大地提高数模转换器(DAC)的性能。通过在光域中实现位路径、位路径的组合、时间交织和/或时钟来实现改进。我们解决的问题是,由于现代规模化硅工艺中的线性和电子速度边界,DAC的性能不能再有很大的提高。电DAC的性能受到带宽问题的限制,因为例如对于位生成,必须在输出端组合大量路径(例如,对于分段的6位DAC有17个单元),从而大量增加了电容寄生。如果将比特路径组合在光域中,我们只需要一个简单的单路跨阻放大器(TIA),经过光电二极管后,就可以反向转换到电域。因此,更高的带宽是可能的。此外,与电方法相比,交织可以以更低的损耗和更高的精度来实现。电子DAC的分辨率受到时序失调的限制。通过使用抖动值远低于电振荡器的抖动值的外部馈电锁模激光时钟信号,可以减少不对准,从而提高分辨率。我们的概念性前期研究表明,使用我们的电光方法,在80 GHz的带宽下,应该可以达到7个有效比特的分辨率。与现有技术相比,这将使分辨率提高4倍,带宽提高2倍,从而将相关的品质因数提高8倍。这将例如为下一代通信系统、测量设备和任意波形发生器铺平道路。在器件实现和光电集成方面,我们采用了IHP的EPIC SiGe SG25H4技术作为基础,该技术具有例如一个光学元件库以及最高振荡频率为220 GHz的BiCMOS晶体管。我们的主要任务包括:光学辅助DAC的系统建模、设计和优化,包括理论方面;所需集成光学元件(例如光电探测器、分段调制器、耦合器和波导)和电路(例如TIA、调制器驱动器、校准电路和DAC子核)的开发、优化和硬件实现;以及关键模块的电光共集成。EPIDAC结合了德累斯顿理工大学的Frank Ellinger(h≥28)在高频电路设计和通信方面和国际HP的Lars Zimmermann(h≥20)在高速光子学和光电集成方面的互补能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Frank Ellinger其他文献

Professor Dr.-Ing. Frank Ellinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Frank Ellinger', 18)}}的其他基金

Low-loss on-chip resonators enabling high-performance amplifiers and oscillators
低损耗片上谐振器可实现高性能放大器和振荡器
  • 批准号:
    426291622
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive Millimetre-wave Integrated TranSmitters
自适应毫米波集成发射机
  • 批准号:
    394221495
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bendable wireless sensors and millimetre-wave transmitters using thinned SiGe BiCMOSAcronym: Bend-IT
使用薄化 SiGe BiCMOS 的可弯曲无线传感器和毫米波发射器缩写:Bend-IT
  • 批准号:
    356463945
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3D-LommID: Novel Techniques, Theories and Circuits for 3D Locatablemm-Wave RFID Tags
3D-LommID:3D 可定位毫米波 RFID 标签的新技术、理论和电路
  • 批准号:
    288736853
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coordination Funds
协调基金
  • 批准号:
    270774198
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Wireless Indium-Gallium-Zink-Oxide TranSceivers and Devices On Mechanically-Flexible Thin-Film Substrates (W I S D O M II)
机械柔性薄膜基板上的无线氧化铟镓锌收发器和器件 (W I S D O M II)
  • 批准号:
    271795180
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
FlexARTwo - Flexible Active Radar Backscatter Tags with Organic Electronics
FlexARTwo - 具有有机电子器件的灵活有源雷达反向散射标签
  • 批准号:
    273175996
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Automatic Impedance Matching Control Concepts for Sub-THz Amplifiers
亚太赫兹放大器的自动阻抗匹配控制概念
  • 批准号:
    254847389
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On-Chip Integrated Distributed Amplifier and Antenna Systems in SiGe BiCMOS for Ultra-Large-Bandwidth Transmitters (DAAB-Tx)
用于超大带宽发射机 (DAAB-Tx) 的 SiGe BiCMOS 片上集成分布式放大器和天线系统
  • 批准号:
    236766176
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Novel Techniques, Theories and Circuits for Locatable mm-Wave RFID Tags (Techniken, Theorien und Schaltungen für lokalisierbare mm-Wellen-RFID-Tags)
可定位毫米波 RFID 标签的新技术、理论和电路
  • 批准号:
    140149181
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
IUCRC Phase 1 University of Central Florida: Center for Electronic-Photonic Integrated Circuits for Aerospace (EPICA)
IUCRC 第一阶段中佛罗里达大学:航空航天电子光子集成电路中心 (EPICA)
  • 批准号:
    2052701
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
IUCRC Phase I Georgia Institute of Technology: Electronic-Photonic Integrated Circuits for Aerospace (EPICA)
IUCRC 第一阶段佐治亚理工学院:航空航天电子光子集成电路(EPICA)
  • 批准号:
    2052808
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
IUCRC Phase I Vanderbilt University: Electronic-Photonic Integrated Circuits for Aerospace (EPICA)
IUCRC 第一阶段范德比尔特大学:航空航天电子光子集成电路 (EPICA)
  • 批准号:
    2052742
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Scaleable integration of electronic and Photonic integrated circuits for quantum optics in silicon
用于硅中量子光学的电子和光子集成电路的可扩展集成
  • 批准号:
    2606682
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Integrated photonic receiver enabling parallel electronic processing for cost effective high-speed data communications
集成光子接收器可实现并行电子处理,实现经济高效的高速数据通信
  • 批准号:
    491284-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Idea to Innovation
PIC: Hybrid Silicon Electronic-Photonic Integrated Neuromorphic Networks
PIC:混合硅电子-光子集成神经形态网络
  • 批准号:
    1810282
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了