Skyrmions in antiferromagnetic and highly anisotropic environments

反铁磁和高度各向异性环境中的斯格明子

基本信息

项目摘要

Within this project, we will make use of the atomic-resolution capabilities of spin-polarized scanning tunneling microscopy (SP-STM) to (i) prepare and directly image skyrmions in antiferromagnetic (AFM) films, (ii) to study highly anisotropic chiral spin structures and magnetic solitons in yet unexplored strongly anisotropic transition metal oxides (TMO), and (iii) to probe how magnetic domain walls and skyrmions interact with electric currents. Towards these goals, we will image the real-space spin structure with atomic resolution and study the impact of external stimuli, such as global external magnetic fields or local electric field pulses applied by the STM tip. Furthermore, we will investigate the effects of single molecular or atomic defects on the formation, size, shape, and mobility of magnetic skyrmions. WP(i) — Skyrmions with a ferromagnetic exchange interaction (FM-Sky) have already been intensively investigated both experimentally and theoretically. In contrast, skyrmions in materials with AFM exchange (AFM-Sky), which are predicted to exhibit an even stronger spin torque without any skyrmion Hall effect, have so far been only proposed within the framework of model calculations. In cooperation with experts in DFT from the University of Kiel (Heinze) we will investigate skyrmion formation in AFM thin films. In addition to films with lateral AFM exchange, so-called “G-type” antiferromagnets, we will also perform experiments on layered antiferromagnets where individual atomic layers couple FM but the inter-layer coupling is AFM. Once discovered we will investigate how skyrmions can be generated, manipulated, or annihilated by global external or local STM-induced fields. In cooperation with the FZ Jülich (Lounis) we will also study how the properties of single skyrmions or the interactions between them respond to intentionally deposited adatoms or molecules. WP(ii) — Magnetic skyrmion systems investigated so far always consisted of two-dimensional films with rather isotropic exchange mechanisms. Recently, we discovered strongly anisotropic chiral magnetic structures in one-dimensional TMOs epitaxially grown on heavy fcc(001) surfaces. In cooperation with FZ Jülich (Lezaic/Blügel) we will investigate the indirect magnetic exchange coupling responsible for these spiral spin structures. Towards this purpose, we will study how the magnetic structure responds to external magnetic fields or an increased temperature. Furthermore, we will image the propagation of domain walls (solitons) in these spin spirals. WP(iii) — Charge currents exert an extraordinary large spin torque on magnetic skyrmions. We will investigate charge and spin transport through single skyrmions by means of STM-induced remote molecule isomerization studies and compare the results to conventional domains and domain walls. This novel technique allows to interrogate the effects of single defects with unprecedented resolution.
在这个项目中,我们将利用自旋极化扫描隧道显微镜(SP-STM)的原子分辨率来(i)制备和直接成像反铁磁(AFM)薄膜中的skyrmions, (ii)研究尚未探索的强各向异性过渡金属氧化物(TMO)中的高各向异性手性自旋结构和磁孤子,以及(iii)探测磁畴壁和skyrmions如何与电流相互作用。为了实现这些目标,我们将以原子分辨率对实空间自旋结构进行成像,并研究外部刺激的影响,例如全局外部磁场或STM尖端施加的局部电场脉冲。此外,我们将研究单分子或原子缺陷对磁性微粒的形成、大小、形状和迁移率的影响。具有铁磁交换相互作用(FM-Sky)的WP(i) - Skyrmions已经在实验和理论上进行了深入的研究。相比之下,具有AFM交换的材料中的skyrmions (AFM- sky),预计在没有任何skyrmions霍尔效应的情况下表现出更强的自旋扭矩,迄今为止仅在模型计算的框架内提出。我们将与来自基尔大学(海因策)的DFT专家合作,研究AFM薄膜中skyrion的形成。除了具有横向AFM交换的薄膜,即所谓的“g型”反铁磁体外,我们还将对层状反铁磁体进行实验,其中单个原子层耦合FM,但层间耦合是AFM。一旦发现,我们将研究如何通过全球外部或局部stm诱导场产生,操纵或消灭skyrmions。在与FZ j<e:1>利希(Lounis)的合作中,我们还将研究单个skyrmions的性质或它们之间的相互作用如何响应有意沉积的附着原子或分子。WP(ii) -迄今为止所研究的磁skyrmion系统总是由具有相当各向同性交换机制的二维薄膜组成。最近,我们在重fcc(001)表面外延生长的一维TMOs中发现了强各向异性的手性磁结构。我们将与FZ j<e:1> lich (Lezaic/ bl<e:1> gel)合作,研究导致这些螺旋自旋结构的间接磁交换耦合。为此,我们将研究磁性结构对外部磁场或温度升高的响应。此外,我们将成像畴壁(孤子)在这些自旋螺旋中的传播。WP(iii) -电荷电流对磁陀螺施加非常大的自旋扭矩。我们将通过stm诱导的远程分子异构化研究来研究电荷和自旋通过单个skyrmions的输运,并将结果与常规畴和畴壁进行比较。这种新技术允许以前所未有的分辨率询问单个缺陷的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Matthias Bode其他文献

Professor Dr. Matthias Bode的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Matthias Bode', 18)}}的其他基金

Spin-resolved electonic properties of strongly correlated one-dimensional systems
强相关一维系统的自旋分辨电子特性
  • 批准号:
    313463679
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Units
Spin-resolved spectro-microscopy of correlated surface and interface systems
相关表面和界面系统的自旋分辨光谱显微镜
  • 批准号:
    229223408
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Thermal and current-induced magnetization reversal in antiferromagnetic nanostructures
反铁磁纳米结构中的热和电流感应磁化反转
  • 批准号:
    239973735
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Quasi-particle interference in surface- and bulk-doped topological insulators and Weyl semimetals
表面和体掺杂拓扑绝缘体和韦尔半金属中的准粒子干涉
  • 批准号:
    237559088
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Lokale Spektroskopie von Korrelationseffekten auf Übergangsmetalloxid- und Seltenerdmetalloberflächen
过渡金属氧化物和稀土金属表面相关效应的局域光谱
  • 批准号:
    18078998
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spin structures in transition metal oxide or chalgogenide chains
过渡金属氧化物或硫族化物链中的自旋结构
  • 批准号:
    516080144
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spin structure of rare-earth metal films
稀土金属薄膜的自旋结构
  • 批准号:
    510676484
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
How the atomic lattice and defects affects charge transport in anisotropic surfaces
原子晶格和缺陷如何影响各向异性表面中的电荷传输
  • 批准号:
    450162671
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
  • 批准号:
    2205973
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
  • 批准号:
    23K13655
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Antiferromagnetic Skyrmions in Multi-metal Nitride thin films
多金属氮化物薄膜中的反铁磁斯格明子
  • 批准号:
    22KJ1581
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Probing Antiferromagnetic Spintronics with Nitrogen-Vacancy Centers in Diamond
职业:利用金刚石中的氮空位中心探测反铁磁自旋电子学
  • 批准号:
    2342569
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Transport of the antiferromagnetic order
反铁磁序的传输
  • 批准号:
    23K13050
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Active antiferromagnetic materials for hosting hybrid magnonic functionalities
用于承载混合磁波函数的活性反铁磁材料
  • 批准号:
    2328787
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of Structure-Property Relationships in Canted Antiferromagnetic Molecular Conductors by Fine Control of Intermolecular Interactions
通过分子间相互作用的精细控制研究倾斜反铁磁分子导体的结构-性能关系
  • 批准号:
    23K13722
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
  • 批准号:
    EP/W006049/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigation of frustrated antiferromagnetic compounds using ultrasonic velocity measurements
使用超声波速度测量研究受挫反铁磁化合物
  • 批准号:
    RGPIN-2018-04889
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
  • 批准号:
    2210510
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了