Driver-automation mutual adaptation: modeling, design, and evaluation of haptic interface for cooperative driving tasks

驾驶员-自动化相互适应:协作驾驶任务的触觉界面的建模、设计和评估

基本信息

  • 批准号:
    21K17781
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Our research focuses on driver-automation mutual adaptation for haptic shared control.In FY 2022, our research achievements are summarized as follows:1. A driver model was developed using a deep learning network and was trained on data collected from a driving simulator experiment with nine participants, and is demonstrated to be effective in predicting individual driver's target trajectory. The driver model is applied for further design of shared control.2. An adaptive control allocation algorithm was developed for lane keeping under an indirect shared control framework. The algorithm uses a trust-based data-driven shared control strategy and blends control inputs of drivers and automation. The automated control agent is computed using Koopman model predictive control. Adaptive control authority allocation is achieved using a hybrid human-to-machine trust model based on a trust mechanism inferred from human-automation interaction and driver input intention. The proposed algorithm is demonstrated to be effective and beneficial in an interactive simulation environment with five participants.3. A steering assistance system involving a shared control strategy was developed for driver override in automated vehicles. The system considers the potential driver demand for override when the vehicle initiates a fail-safe maneuver. A shared control strategy based on driver controllability is adopted to smoothly transfer driving authority when the vehicle is out of danger. The effectiveness of the proposed system is demonstrated in multi-lane highway scenarios.
我们的研究重点是驾驶员-自动化相互适应以实现触觉共享控制。使用深度学习网络开发了一个驾驶员模型,并在有9名参与者的驾驶模拟器实验中收集的数据上进行了训练,并证明了该模型在预测单个驾驶员的目标轨迹方面是有效的。该驱动程序模型用于共享控件的进一步设计.在间接共享控制框架下,提出了一种车道保持的自适应控制分配算法。该算法采用基于信任的数据驱动共享控制策略,融合了驾驶员和自动化的控制输入。自动控制代理使用Koopman模型预测控制计算。自适应控制权限分配是使用一个混合的人机信任模型的基础上推断的信任机制,从人与自动化的互动和驾驶员的输入意图。在一个有五个参与者的交互式仿真环境中,该算法被证明是有效的和有益的.针对自动驾驶汽车的驾驶员超控问题,提出了一种基于共享控制策略的转向辅助系统。当车辆启动故障安全操纵时,系统考虑驾驶员对超驰的潜在需求。采用基于驾驶员可控性的共享控制策略,在车辆脱离危险时实现驾驶权的平稳转移。该系统的有效性证明在多车道高速公路的情况下。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Fail-safe System involving Shared Control Strategy for Driver Override
涉及驱动程序覆盖共享控制策略的故障安全系统
  • DOI:
    10.1016/j.ifacol.2022.10.558
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xue Wei;Wang Zheng;Yang Bo;Zheng Rencheng;Nakano Kimihiko
  • 通讯作者:
    Nakano Kimihiko
Modeling and analysis of driver behaviour under shared control through weighted visual and haptic guidance
  • DOI:
    10.1049/itr2.12163
  • 发表时间:
    2022-01-13
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Wang,Zheng;Zheng,Rencheng;Nakano,Kimihiko
  • 通讯作者:
    Nakano,Kimihiko
Trust-based Data-driven Shared Control for Lane-keeping
基于信任的数据驱动的车道保持共享控制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nacpil Edric John Cruz;Wang Zheng;Nakano Kimihiko;Wei Xue;Shuo Cheng;Shuo Cheng;Muhua Guan;Daihong Wan
  • 通讯作者:
    Daihong Wan
Classification of Automated Lane-Change Styles by Modeling and Analyzing Truck Driver Behavior: A Driving Simulator Study
  • DOI:
    10.1109/ojits.2022.3222442
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Zheng Wang;Muhua Guan;Jin Lan;Bo Yang;T. Kaizuka;Junichi Taki;Kimihiko Nakano
  • 通讯作者:
    Zheng Wang;Muhua Guan;Jin Lan;Bo Yang;T. Kaizuka;Junichi Taki;Kimihiko Nakano
Indicator of Safety and Comfort Performance: Quantifying Different Driving Styles for Automated Vehicles
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

王 正其他文献

領域気象モデル WRF の土地利用データのための LCZ マップの作成(その 1) 客観データに基づく東京首都圏の市街地形態と地表面被覆の分析
区域气象模型WRF土地利用数据的LCZ地图制作(第1部分)基于客观数据的东京都市区形态和地表覆盖分析

王 正的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Model Based Safety Analysis of Automated Driving Systems project
基于模型的自动驾驶系统安全分析项目
  • 批准号:
    2886377
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Studentship
Construction of high accuracy 3D map for automated driving of mobility scooter
滑板车自动驾驶高精度3D地图构建
  • 批准号:
    22K11345
  • 财政年份:
    2022
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ERI: Investigate the Role of Affect in Fostering Trust in Automated Driving
ERI:调查情感在培养自动驾驶信任方面的作用
  • 批准号:
    2138274
  • 财政年份:
    2022
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Robust Automated Driving in Extreme Weather (ROADVIEW)
极端天气下的稳健自动驾驶 (ROADVIEW)
  • 批准号:
    10045139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.25万
  • 项目类别:
    EU-Funded
Driver Cognition And Automated Driving
驾驶员认知与自动驾驶
  • 批准号:
    CRC-2018-00092
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Canada Research Chairs
New Approach to Deep Learning by Introducing Language Model for Drastic Improvement of Automated Driving Reliability
引入语言模型的深度学习新方法,大幅提高自动驾驶可靠性
  • 批准号:
    21K03985
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Driver Cognition and Automated Driving
驾驶员认知与自动驾驶
  • 批准号:
    CRC-2018-00092
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Canada Research Chairs
V2X Network and Database Platform for Cooperative Automated Driving
协同自动驾驶的V2X网络和数据库平台
  • 批准号:
    20H00589
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Programmable Environmental Stimulation for Automated Driving Systems: Motion Design with Light and Vibration
自动驾驶系统的可编程环境刺激:光和振动运动设计
  • 批准号:
    20H04473
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Behavior Prediction of Traffic Participants based on Micro and Macro features for Urban Automated Driving
城市自动驾驶基于微观和宏观特征的交通参与者行为预测
  • 批准号:
    20K04397
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了