Learning from Clinical Data: Ethical, Social and Legal Aspects

从临床数据中学习:伦理、社会和法律方面

基本信息

项目摘要

The project Learning from Clinical Data (LinCDat) aims to investigate if a paradigm shift from exceptional to routine use of medical data for research and learning activities would be desirable and feasible, from an empirical, ethical and legal view Data from clinical care can be used in various innovative, data-gathering, non-interventional studies or learning activities (DaNIS) to generate insights valuable beyond the diagnosis and treatment of the individual patient. These studies are thought to be low-risk, and utilizing clinical data for DaNIS can benefit patients and society through advancing science and improving health care quality. However, there are serious practical difficulties and normative concerns, such as protection of patients’ privacy and data sovereignty, which must be addressed. So far, rights and responsibilities of all stakeholders to contribute to DaNIS within a public health care system like Germany’s have not been explored in depth, and the empirical data needed to include the perspectives of stakeholders in an ethical and legal analysis are missing. The lack of a rigorous investigation of the normative issues related to DaNIS has engendered unease, hindering the systematic provision and use of clinical data for learning and research.In our project, we employ an interdisciplinary approach to address ethical, legal and social questions raised by DaNIS: the first step is to develop a typology of DaNIS and analyze the opportunities, risks and burdens. (Work Package 1: WP1). Building on WP1, we investigate the attitudes, and moral and legal rights and duties of physicians (WP2) and patients (WP3) concerning DaNIS. We also examine whether and to what extent society, particularly in light of public health care systems, is entitled to contributions to DaNIS from patients, physicians and institutions, as well as the responsibilities of public instituions to protect stakeholders and promote DaNIS. Finally, we leverage the insights from WP1-4 to develop a governance framework for DaNIS for 1) policy makers, 2) funding agencies, and 3) health care institutions addressing: a) principles and procedures to inform, involve and protect patients; b) the role of physicians and incentives for physicians to contribute to DaNIS c) patients’, physicians’, and institutions’ roles and responsibilities to contribute to DaNIS. The governance framework aims to develop strategies that encourage the sharing and use of clinical data while maintaining rigorous but proportionate information governance and accountability. Prof. Winkler’s position as attending physician in a university medical center ensures access to the field and readily available opportunities for implementing approaches in clinical practice. International expertise in the ethical and legal governance of health and genomic data and best practices will be provided by Adrian Thorogood as Mercator Fellow.
从临床数据中学习(LinCDat)项目旨在从经验、伦理和法律的角度调查研究和学习活动中从例外使用医学数据到常规使用医学数据的范式转变是否可取和可行。非干预性研究或学习活动(DaNIS),以产生超越个体患者诊断和治疗的有价值的见解。这些研究被认为是低风险的,利用DaNIS的临床数据可以通过推进科学和提高医疗保健质量使患者和社会受益。然而,存在着严重的实际困难和规范性问题,如保护患者隐私和数据主权,必须加以解决。到目前为止,所有利益相关者在德国这样的公共卫生保健系统中为DaNIS做出贡献的权利和责任尚未得到深入探讨,并且缺乏将利益相关者的观点纳入伦理和法律的分析所需的经验数据。由于缺乏对DaNIS相关规范性问题的严格调查,导致了人们的不安,阻碍了临床数据的系统提供和使用。在我们的项目中,我们采用跨学科的方法来解决DaNIS提出的伦理、法律的和社会问题:第一步是建立DaNIS的类型学,并分析其机会、风险和负担。 (Work包装1:WP 1)。 在WP 1的基础上,我们调查了医生(WP 2)和患者(WP 3)对DaNIS的态度,以及道德和法律的权利和义务。 我们还研究了社会,特别是公共医疗保健系统,是否以及在多大程度上有权从患者、医生和机构那里获得DaNIS的捐款,以及公共机构保护利益相关者和促进DaNIS的责任。最后,我们利用WP 1 -4的见解为DaNIS制定了一个治理框架,用于1)政策制定者,2)资助机构,3)医疗保健机构解决:a)告知,参与和保护患者的原则和程序; B)医生的作用和激励医生为DaNIS做出贡献c)患者,医生,以及各机构为DaNIS做出贡献的作用和责任。治理框架旨在制定鼓励共享和使用临床数据的战略,同时保持严格但相称的信息治理和问责制。Winkler教授在大学医学中心担任主治医师,确保了在临床实践中实施方法的领域和现成的机会。Adrian Thorogood作为墨卡托研究员将提供健康和基因组数据的伦理和法律的治理以及最佳实践方面的国际专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Kai Cornelius其他文献

Professor Dr. Kai Cornelius的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Using clinical polysomnography data and machine learning to determine minimum sensing requirements for pediatric sleep studies
使用临床多导睡眠图数据和机器学习来确定儿科睡眠研究的最低传感要求
  • 批准号:
    491364
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Using machine learning and advanced data science to revolutionise clinical trial data management
利用机器学习和先进的数据科学彻底改变临床试验数据管理
  • 批准号:
    10067048
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Application of machine learning to large clinical data sets to risk stratify MSK patients and predict outcomes of MSK intervention
将机器学习应用于大型临床数据集,对 MSK 斯隆患者进行风险分层并预测 MSK 斯隆干预的结果
  • 批准号:
    10072141
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
  • 批准号:
    10652251
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Machine learning-based quantitative image, tissue, and clinical data analysis for lesion detection and characterization on prostate cancer imaging
基于机器学习的定量图像、组织和临床数据分析,用于前列腺癌成像的病变检测和表征
  • 批准号:
    RGPIN-2019-06756
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A new machine learning approach for prediction of personalized screening time and colorectal polyps recurrence based on genomics, clinical, and imaging data
一种新的机器学习方法,用于根据基因组学、临床和影像数据预测个性化筛查时间和结直肠息肉复发
  • 批准号:
    568028-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Deep-CDS: Deep Learning Semantic Data Lake for Clinical Decision Support
Deep-CDS:用于临床决策支持的深度学习语义数据湖
  • 批准号:
    10546333
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了