Hardware Efficient Multi-antenna Transceivers

硬件高效的多天线收发器

基本信息

项目摘要

This project aims to increase the energy efficiency and to reduce the radio-frequency (RF)-cost of multi-antenna transceivers for the fifth generation of wireless networks (5G). Novel energy- and cost-efficient schemes for multi-antenna transceivers will be studied by means of analytical tools from information theory, RF circuit theory, statistical physics, and also with the help of RF software tools. This project encompasses hardware architectures with high power efficiency and low RF-cost, as well as signaling methods allowing for hardware efficient multi-antenna transceivers. Various schemes of Hybrid Analog-Digital (HAD) transceivers for millimeter wave (mmWave) and microwave frequency bands found in literature will be compared and their fundamental limits will be investigated. In addition, novel HAD architectures will be investigated with particular emphasis on reflect arrays. HAD architectures will be analyzed by appropriate analytical and RF simulation tools. Both massive multiple-input multiple-output (MIMO) systems below 6 GHz and mmWave communication will be considered utilizing appropriate channel models. The project results will be some new hardware architectures for multi-antenna transceivers for both base station and user terminal applications with improved energy efficiency and reduced RF-cost compared to the state of the art. Furthermore, analytical and simulation results of such architectures will be provided.Along with hardware architectures, precoding and signaling methods allowing for hardware efficient multi-antenna transceivers including constant envelope and peak power-limited pre-coding will be analytically investigated by invoking the replica method from statistical physics. Furthermore, this method of analysis will be used for precoding with antenna selection in multi-antenna base stations to predict the performance of optimal antenna selection. Finally, novel low-complexity algorithms for these precoding schemes will be proposed for implemention in 5G.
该项目旨在提高第五代无线网络(5G)的多天线收发器的能效并降低其射频(RF)成本。新的能源和成本效益的多天线收发器的方案将通过信息理论,RF电路理论,统计物理分析工具,并与RF软件工具的帮助下进行研究。该项目包括具有高功率效率和低RF成本的硬件架构,以及允许硬件高效多天线收发器的信令方法。将比较文献中发现的毫米波(mmWave)和微波频段的混合模数(HAD)收发器的各种方案,并研究其基本限制。此外,新的HAD架构将进行调查,特别强调反射阵列。HAD架构将通过适当的分析和RF仿真工具进行分析。 6GHz以下的大规模多输入多输出(MIMO)系统和毫米波通信都将考虑使用适当的信道模型。项目结果将是用于基站和用户终端应用的多天线收发器的一些新硬件架构,与现有技术相比,具有提高的能源效率和降低的RF成本。此外,将提供此类架构的分析和仿真结果。沿着硬件架构,允许硬件高效的多天线收发器的预编码和信令方法,包括恒定包络和峰值功率受限的预编码,编码将通过调用统计物理学的复制方法进行分析研究。此外,该分析方法将用于多天线基站中的具有天线选择的预编码,以预测最优天线选择的性能。最后,将提出用于这些预编码方案的新型低复杂度算法,以在5G中实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Georg Fischer其他文献

Professor Dr.-Ing. Georg Fischer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Georg Fischer', 18)}}的其他基金

Dynamic drive for radio frequency power amplifiers with wideband active load modulation
具有宽带有源负载调制的射频功率放大器的动态驱动
  • 批准号:
    393269191
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
System Simulation and Integration Analysis of Non-ideal RF MEMS
非理想RF MEMS系统仿真与集成分析
  • 批准号:
    216628568
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
  • 批准号:
    2337674
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Inferring epithelial tissue mechanics through data-efficient multi-fidelity modelling
通过数据高效的多保真度建模推断上皮组织力学
  • 批准号:
    BB/Y514020/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
  • 批准号:
    2246187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Preparation of functional materials via highly efficient and sustainable sputtering system using multi pulse plasma
使用多脉冲等离子体通过高效且可持续的溅射系统制备功能材料
  • 批准号:
    23K03817
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
  • 批准号:
    22KF0098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
  • 批准号:
    10749588
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Advancing fMRI Acquisition through Dissemination of EPTI- An Efficient Distortion-Free Multi-Contrast Imaging Technology
通过传播 EPTI(一种高效的无失真多重对比成像技术)推进 fMRI 采集
  • 批准号:
    10572005
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了