Percolation models with long-range correlations via isomorphism theorems

通过同构定理具有长程相关性的渗滤模型

基本信息

  • 批准号:
    410738796
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Percolation models have been playing a fundamental role in statistical mechanics for several decades by now. They have initially been investigated in the gelation of polymers during the 1940s by chemistry Nobel laureate Flory and then Stockmayer. From a mathematical point of view, the birth of percolation theory was the introduction of Bernoulli percolation by Broadbent and Hammersley in 1957, motivated by research on gas masks for coal miners. One of the key features of this model is its stochastic independence which simplifies its investigation, and very deep mathematical results have been obtained in this setting. During recent years, the investigation of the more realistic and at the same time more complex situation of percolation models with strong correlations has attracted more and more attention.The main goal of this project is the refined analysis of specific percolative aspects of two emblematic examples of such models, the Gaussian Free Field and the model of Random Interlacements, via the use of isomorphism theorems. In particular, we aim at obtaining a better understanding of the critical parameters for the percolation of level sets of the Gaussian Free Field as well as of the vacant set of Random Interlacements. While the investigation of such aspects is intrinsically difficult due to the strong correlations, the recent development of tools such as isomorphism theorems for these percolation models opens up novel perspectives: In combination with powerful and established techniques such as renormalization group methods as well as decoupling inequalities, properties of one of these models can be beneficially transferred via the sophisticated use of isomorphism theorems to derive interesting insights into the other model.The results we plan to obtain will provide a more profound understanding of certain aspects of the phase transition in the above percolation models, and at the same time answer some of the most important open problems in this field of research. What is more, the tools developed along the project are also expected to have implications on other fields of probability theory and mathematics. In particular, we expect that they will provide further insights into the percolation of Markov loop soups and, most notably, into the investigation of nodal sets in number theory also.
几十年来,渗流模型一直在统计力学中扮演着重要的角色。20世纪40年代,诺贝尔化学奖得主弗洛里和斯托克梅耶首先在聚合物的凝胶化过程中对它们进行了研究。从数学的角度来看,渗透理论的诞生是1957年Broadbent和Hammersley在对煤矿工人防毒面具的研究的推动下引入伯努利渗透理论。该模型的一个重要特征是它的随机无关性,这简化了它的研究,并得到了非常深刻的数学结果。近年来,对具有强相关性的渗流模型更真实、更复杂情况的研究越来越受到人们的重视。该项目的主要目标是通过使用同构定理,对这种模型的两个标志性例子,高斯自由场和随机交错模型的具体渗透方面进行精细分析。特别是,我们的目标是更好地理解高斯自由场的水平集和随机交错的空集的渗透的关键参数。虽然由于强相关性,这些方面的研究本质上是困难的,但这些渗透模型的同构定理等工具的最新发展开辟了新的视角:结合强大而成熟的技术,如重整化群方法以及解耦不等式,可以通过复杂的同构定理的使用来有益地转移其中一个模型的属性,从而获得对另一个模型的有趣见解。我们计划获得的结果将对上述渗流模型中相变的某些方面提供更深刻的理解,同时回答该研究领域中一些最重要的开放性问题。更重要的是,该项目开发的工具也有望对概率论和数学的其他领域产生影响。特别是,我们期望他们将进一步深入了解马尔可夫环汤的渗透,最值得注意的是,也将深入研究数论中的节点集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Drewitz其他文献

Professor Dr. Alexander Drewitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Drewitz', 18)}}的其他基金

The statistical mechanics of the interlacement point process
交错点过程的统计力学
  • 批准号:
    443849332
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Random polynomials and random Kähler geometry
随机多项式和随机凯勒几何
  • 批准号:
    444030945
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
  • 批准号:
    24K07399
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
  • 批准号:
    2309538
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
  • 批准号:
    10549492
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Role of kynurenic acid in higher cognitive deficits: Mechanism and treatment strategies
犬尿酸在较高认知缺陷中的作用:机制和治疗策略
  • 批准号:
    10715487
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Trial of a harm reduction strategy for people with HIV who smoke cigarettes
针对吸烟的艾滋病毒感染者的减害策略试验
  • 批准号:
    10696463
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
  • 批准号:
    10646579
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
  • 批准号:
    10797938
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Epitope-Based CSP Vaccines Optimized to Achieve Long-Term Sterile Immunity
经过优化的基于表位的 CSP 疫苗可实现长期无菌免疫
  • 批准号:
    10637778
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Hearing Loss, Prognosis, and Long-Term Impact of Otitis Media with Effusion in Children
儿童渗出性中耳炎的听力损失、预后和长期影响
  • 批准号:
    10852143
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了