Basic electronic and optoelectronic properties of threading dislocations in heteroepitaxial diamond

异质外延金刚石中螺纹位错的基本电子和光电特性

基本信息

  • 批准号:
    411398861
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The proposal aims at a comprehensive study of the intrinsic electronic & optoelectronic properties of dislocations in diamond. According to general experience with semiconductor materials, high dislocation densities can deteriorate the performance of devices drastically. As a consequence, they are studied intensively and strong efforts are made to minimize their density. Though vigorous activities have been launched to develop diamond-based electronic devices and dislocations have already been identified as major structural defect, our knowledge on their basic properties is rather poor. This is mainly due to the absence of well-defined samples. The group of the applicant has developed a heteroepitaxy technique that recently facilitated the synthesis of a single crystal diamond disc with a diameter of ~90 mm. Their approach has the potential to remove a major hurdle in device development, i.e. the unavailability of wafer-size substrates. In addition, this method enables now the controlled preparation of crystals containing dislocations with defined propagation direction and densities varying over 4 orders of magnitude as required for systematic studies. The planned work will start with a full spectroscopic characterization of samples with defined dislocation densities and line vectors by UV/Vis- and IR-absorption, photoluminescence (PL) and cathodoluminescence (CL). Next, a setup for spectrally resolved photoconductivity (SPC) and thermally stimulated currents (TSC) will be constructed. The subsequent measurements will identify and quantify electrically active defect levels. In the framework of several collaborations, charge collection efficiency (CCE) and charge transient spectroscopy (QTS) measurements will be performed in order to derive density, capture cross section and depth of traps, separately for electrons and holes. Next, the diffusion coefficient and the lifetime of charge carriers will be determined by two pump-probe techniques. Finally, the material will be used to produce devices (detectors, electronic devices). Besides insight in the intrinsic electronic properties of dislocations, critical thresholds for their density in different applications will be derived, that can provide benchmarks for devices development.
该提案旨在全面研究金刚石中位错的本征电子和光电子性质。根据半导体材料的一般经验,高位错密度会大大降低器件的性能。因此,人们对它们进行了深入的研究,并作出了很大的努力来减少它们的密度。虽然人们已经开始大力开发金刚石基电子器件,并且位错已经被确定为主要的结构缺陷,但我们对其基本性质的了解却相当贫乏。这主要是由于缺乏定义良好的样本。申请人小组开发了一种异质外延技术,最近促进了直径约90毫米的单晶金刚石盘的合成。他们的方法有可能消除器件开发中的一个主要障碍,即晶圆尺寸基板的不可用性。此外,这种方法现在可以控制制备含有位错的晶体,其传播方向和密度在系统研究所需的4个数量级以上。计划中的工作将从通过UV/Vis和ir吸收,光致发光(PL)和阴极发光(CL)对具有确定的位错密度和线矢量的样品进行全光谱表征开始。接下来,将建立光谱分辨光电导率(SPC)和热刺激电流(TSC)的设置。随后的测量将确定并量化电活动缺陷的水平。在几个合作的框架内,电荷收集效率(CCE)和电荷瞬态光谱(QTS)测量将被执行,以分别获得电子和空穴的密度、捕获截面和陷阱深度。接下来,将用两种泵浦探针技术确定载流子的扩散系数和寿命。最后,该材料将用于生产设备(探测器,电子设备)。除了深入了解位错的内在电子特性外,还将推导出不同应用中其密度的临界阈值,这可以为设备开发提供基准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Matthias Schreck其他文献

Dr. Matthias Schreck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Matthias Schreck', 18)}}的其他基金

Epitaxial multilayers as substrates for the large area growth of graphene: Metal/YSZ/Si(111) and Diamond/Ir/YSZ/Si(111)
作为石墨烯大面积生长基底的外延多层膜:金属/YSZ/Si(111) 和金刚石/Ir/YSZ/Si(111)
  • 批准号:
    172854560
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Concepts and mechanisms of dislocation density reduction in heteroepitaxial diamond
异质外延金刚石位错密度降低的概念和机制
  • 批准号:
    453637298
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于循证医学本体论的临床元数据语言研究
  • 批准号:
    30972549
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
基于安全多方计算的抗强制电子选举协议研究
  • 批准号:
    60773114
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321302
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321301
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Atomically flat 3D metal-2D layered semiconductor devices for electronic and optoelectronic applications
RUI:用于电子和光电应用的原子级平面 3D 金属-2D 分层半导体器件
  • 批准号:
    2151971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of New Organic Electronic and Optoelectronic Materials
新型有机电子光电材料的开发
  • 批准号:
    RGPIN-2022-03782
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Polydiacetylenes in Organic Semiconductors: Functional and Patternable Optoelectronic Materials for Future Electronic Devices
有机半导体中的聚二乙炔:用于未来电子设备的功能性和可图案化光电材料
  • 批准号:
    571857-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
  • 批准号:
    2015946
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
  • 批准号:
    2015954
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nanoscale interfaces in organic electronic and optoelectronic materials
有机电子和光电材料中的纳米级界面
  • 批准号:
    402072-2012
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale interfaces in organic electronic and optoelectronic materials
有机电子和光电材料中的纳米级界面
  • 批准号:
    402072-2012
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Electronic and Optoelectronic Materials and Devices
电子光电材料与器件
  • 批准号:
    1000212022-2008
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了