Baxter Q-operators and supersymmetric gauge theories

Baxter Q 算子和超对称规范理论

基本信息

  • 批准号:
    416527151
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This scientific project concerns the study of quantum integrable models and their relations to gauge theories. It is motivated by the growing necessity for a thorough and deep understanding of the integrable structures behind N=4 super Yang-Mills theory and N=6 super Chern-Simons theory which may ultimately allow for a non-perturbative formulation of these supersymmetric gauge theories. The proposal contains two major research themes which are interrelated but can be investigated in parallel. The goal of the first theme is to make Q-operator methods available for N=4 super Yang-Mills theory by combining the known Q-operator construction for non-compact spin chains and the celebrated Quantum Spectral Curve of the gauge theory. The goal of the second theme is to develop the Q-operator construction of spin chains for orthosymplectic Lie superalgebras using results which can be extracted from the Seiberg-Witten curve of the corresponding N=2 quiver gauge theories. In particular, such Q-operators appear in N=6 super Chern-Simons theory. We hope that this project will reveal the underlying integrable model of N=4 super Yang-Mills theory at finite coupling but also open the door to apply Q-operator techniques to N=6 super Chern-Simons theory. Apart from that, our studies shall bring us closer to a universal formulation of the Q-operator construction of spin chains for general Lie algebras.
这个科学项目涉及量子可积模型及其与规范理论的关系的研究。它的动机是对N=4超级Yang-Mills理论和N=6超级chen - simons理论背后的可积结构的透彻和深刻理解的日益增长的必要性,这可能最终允许这些超对称规范理论的非摄动表述。该提案包含两个相互关联但可以并行研究的主要研究主题。第一个主题的目标是通过结合已知的非紧自旋链的q算子构造和规范理论中著名的量子谱曲线,使q算子方法可用于N=4超级Yang-Mills理论。第二个主题的目标是利用相应的N=2颤振规范理论的Seiberg-Witten曲线的结果,发展正辛李超代数自旋链的q算子构造。特别地,这样的q算子出现在N=6超级chen - simons理论中。我们希望该项目将揭示N=4超级Yang-Mills理论在有限耦合下的潜在可积模型,并为将q算子技术应用于N=6超级chen - simons理论打开大门。除此之外,我们的研究将使我们更接近于一般李代数自旋链的q算子构造的通用公式。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lax matrices from antidominantly shifted Yangians and quantum affine algebras: A-type
来自反显性移位 Yangians 和量子仿射代数的松弛矩阵:A 型
  • DOI:
    10.1016/j.aim.2022.108283
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Frassek;V. Pestun;A. Tsymbaliuk
  • 通讯作者:
    A. Tsymbaliuk
Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types
  • DOI:
    10.1007/s00220-022-04345-6
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Rouven Frassek;A. Tsymbaliuk
  • 通讯作者:
    Rouven Frassek;A. Tsymbaliuk
Oscillator realisations associated to the D-type Yangian: Towards the operatorial Q-system of orthogonal spin chains
  • DOI:
    10.1016/j.nuclphysb.2020.115063
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Frassek, Rouven
  • 通讯作者:
    Frassek, Rouven
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Rouven Frassek其他文献

Dr. Rouven Frassek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: CIRM 2024: Operators on analytic function spaces
会议:CIRM 2024:分析函数空间的算子
  • 批准号:
    2346736
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a distributed, on-site, solar array life cycle management solution to reduce the lifetime cost of ownership of solar arrays for public sector operators
开发分布式现场太阳能电池阵列生命周期管理解决方案,以降低公共部门运营商太阳能电池阵列的生命周期拥有成本
  • 批准号:
    10113860
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    SME Support
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Auto-compact: AI-powered quality control system for automotive OEMs and Finished Vehicle Logistics (FVL) operators
Auto-compact:面向汽车原始设备制造商和整车物流 (FVL) 运营商的人工智能质量控制系统
  • 批准号:
    83003000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Innovation Loans
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
III: Medium: Linear Algebra Operators in Databases to Support Analytic and Machine-Learning Workloads
III:中:数据库中的线性代数运算符支持分析和机器学习工作负载
  • 批准号:
    2312991
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homological approaches to differential forms, differential operators, and transfer of algebra structures
微分形式、微分算子和代数结构传递的同调方法
  • 批准号:
    2302198
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了