Development of deterministic quantum-light sources from InP-based quantum dots in the telecom c-band

电信 C 波段基于 InP 的量子点开发确定性量子光源

基本信息

  • 批准号:
    418390659
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This project focuses on generation of non-classical light at telecom wavelengths (1.55 μm) from self-assembled InP-based single quantum dots (QDs), which are deterministically integrated into photonic microstructures for enhanced photon outcoupling and emission control. Project addresses three main challenges: control of the electronic structure, enhancement of photon extraction efficiency for study on optically-generated quantum light states, i.e. bright single- and twin-photons (degenerate in energy and polarization) and electrically-driven single-photon emission. We will tackle these challenges by epitaxial growth, external tuning and deterministically integrating single QDs into microlenses using in-situ electron-beam lithography. The microlens design in combination with a lower mirror section is expected to result in broadband enhancement of photon extraction efficiency and will be the basis for efficient (quantum)-optical characterization of non-classical light at long wavelengths. We aim at exploring convenient external control of emission properties of QD-microlenses mainly in terms of the biexciton binding energy crucial for realization and systematic study of twin-photons emission. Regarding single-photon emission, we focus on electrical charge control and electrical carrier injection to study properties of different excitonic complexes. With respect to twin-photons we aim at using the degenerate biexciton-exciton (XX-X) cascade to generate time-correlated photon pairs. In order to study them in a systematic way, we will combine the QD-microlenses with a piezo-actuator, which allows for convenient tuning and reduction of biexciton binding energy towards fine structure splitting of the bright X as required for twin-photon emission. Our project combines leading expertise of the involved groups on the growth and optical characterization of high-quality telecom-wavelength InP-based QDs (UNIKASSEL), and the deterministic fabrication of quantum light sources and quantum- optical study of semiconductor quantum dots (TUB). The output of the proposed research will significantly advance the state of knowledge on quantum light emission at telecom wavelengths and will open up exciting prospects for single- and twin-photon sources for fiber-based quantum communication and nonlinear spectroscopy.
该项目的重点是从自组装的InP基单量子点(QD)中产生电信波长(1.55 μm)的非经典光,这些量子点被确定性地集成到光子微结构中,以增强光子耦合和发射控制。该项目解决了三个主要挑战:控制电子结构,提高光子提取效率,以研究光学产生的量子光态,即明亮的单光子和双光子(能量和偏振退化)和电驱动的单光子发射。我们将通过外延生长、外部调谐和使用原位电子束光刻确定性地将单个量子点集成到微透镜中来应对这些挑战。与较低的反射镜部分相结合的微透镜设计预计会导致光子提取效率的宽带增强,并将成为长波长非经典光的有效(量子)光学表征的基础。我们的目标是探索方便的外部控制的量子点微透镜的发射特性,主要是在双激子结合能的实现和系统的研究双光子发射的关键。在单光子发射方面,我们主要从电荷控制和载流子注入两个方面来研究不同激子复合物的性质。对于孪生光子,我们的目标是使用简并双激子-激子(XX-X)级联来产生时间相关光子对。为了系统地研究它们,我们将联合收割机的量子点微透镜与压电致动器,这允许方便的调谐和减少双激子结合能对精细结构分裂的明亮的X所需的双光子发射。我们的项目结合了相关团队在高质量电信波长InP基QD(UNIKASSEL)的生长和光学表征方面的领先专业知识,以及量子光源的确定性制造和半导体量子点(TUB)的量子光学研究。拟议研究的成果将大大推进电信波长量子光发射的知识状态,并将为基于光纤的量子通信和非线性光谱学的单光子和双光子源开辟令人兴奋的前景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Mohamed Benyoucef其他文献

Professor Dr. Mohamed Benyoucef的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Mohamed Benyoucef', 18)}}的其他基金

Quantum Nano Photonics
量子纳米光子学
  • 批准号:
    505496601
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants

相似海外基金

Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Application of deterministic dopant devices to probabilistic information processing, quantum computing/measurement
确定性掺杂器件在概率信息处理、量子计算/测量中的应用
  • 批准号:
    23H00169
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
  • 批准号:
    2240621
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Developing a Deterministic, 3D Printer for Quantum Defects
EAGER:量子制造:开发用于量子缺陷的确定性 3D 打印机
  • 批准号:
    2240479
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Realizing deterministic array of quantum defects in 2D materials
实现二维材料中量子缺陷的确定性阵列
  • 批准号:
    580936-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Deterministic and tunable quantum dots based on bilayer semiconductor heterostructures
基于双层半导体异质结构的确定性可调量子点
  • 批准号:
    2054572
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reducing disruption to project Manatee- building a deterministic single photon source for quantum computing and comms
减少对 Manatee 项目的干扰 - 为量子计算和通信构建确定性单光子源
  • 批准号:
    72078
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了