EAGER: Quantum Manufacturing: Developing a Deterministic, 3D Printer for Quantum Defects

EAGER:量子制造:开发用于量子缺陷的确定性 3D 打印机

基本信息

  • 批准号:
    2240479
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

New devices based on quantum phenomena, like quantum computers and networks, require new reliable and scalable manufacturing methods with extreme precision. These devices are often comprised of discrete atoms or nanoscale structures that must be exactly placed into desired locations. Existing methods to create these devices are time-consuming, incompatible with many materials, lack atomic precision, and, most significantly, are unreliable. As a result, scalable device production, which requires interfacing networks of indistinguishable nanostructures, is difficult. This EArly-concept Grant for Exploratory Research (EAGER) Quantum Manufacturing award supports fundamental research to develop a robust and scalable manufacturing approach to incorporate nanomaterials into devices with the atomic precision required for quantum technologies. The new process enables the deterministic printing of nanomaterials with desired qualities from solutions into precise locations with full orientation control. This approach separates material synthesis from device manufacturing to improve performance and enables quantum devices based on more precisely synthesized materials. These capabilities address manufacturing limitations for not only quantum devices, but also energy, communication, and medicine applications based on nanomaterials. Thus, advances from this award benefit both the U.S. economy and society by establishing manufacturing expertise in the emerging quantum technologies market, by securing national defense in a new generation of sensors and networks, and by advancing energy security (chemical catalysis and solar). The multi-disciplinary research project incorporates fluid mechanics, simulations, optics design, and materials science to provide unique training for graduate and undergraduate students. The core knowledge, simulation tools, and equipment designs will be disseminated so that the manufacturing approach can be broadly adopted to accelerate research and development in these critical fields.The successful production of quantum technologies requires incorporating high-quality qubits into 100 nm3 regions. Current manufacturing approaches are stochastic, restricted to materials that can be processed by lithography, and often lack this precision. This manufacturing method involves an approach whereby nanostructured qubits are synthesized, characterized, and printed via thermo-optic forces. Separating these processes lifts compatibility restrictions, enables deterministic manufacturing, and mitigates sources of decoherence. This project aims to achieve 100 nm3 printing by assessing critical variables identified by first-principles simulations. These include nanomaterial optical properties, such as their geometry and refractive index, and the colloidal environment and forces, such as solvent thermophysical parameters. These results will be incorporated into a physics-based model to optimize printing precision. Leveraging this method, the research team aims to develop structure-property relationships to establish how enhanced printing precision and material properties influence device behavior, including coherence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于量子现象的新设备,如量子计算机和网络,需要新的可靠和可扩展的制造方法,并具有极高的精度。这些装置通常由离散的原子或纳米级结构组成,必须精确地放置在所需的位置。现有的制造这些装置的方法耗时长,与许多材料不兼容,缺乏原子精度,最重要的是,不可靠。因此,需要不可区分的纳米结构的接口网络的可扩展设备生产是困难的。这项探索性研究(EAGER)量子制造奖的早期概念资助支持基础研究,以开发一种强大且可扩展的制造方法,将纳米材料整合到量子技术所需的原子精度设备中。新工艺使纳米材料的确定性打印具有所需的质量,从溶液到精确的位置,并具有完全的方向控制。这种方法将材料合成与器件制造分离开来,以提高性能,并使量子器件基于更精确的合成材料。这些能力不仅解决了量子器件的制造限制,而且解决了基于纳米材料的能源、通信和医学应用的限制。因此,通过在新兴量子技术市场建立制造专业知识,通过确保新一代传感器和网络的国防,以及通过推进能源安全(化学催化和太阳能),该奖项的进展将使美国经济和社会受益。这个多学科的研究项目结合了流体力学、模拟、光学设计和材料科学,为研究生和本科生提供独特的培训。核心知识、仿真工具和设备设计将被传播,使制造方法可以广泛采用,以加速这些关键领域的研究和开发。量子技术的成功生产需要将高质量的量子比特集成到100 nm3的区域中。目前的制造方法是随机的,局限于可以用光刻技术加工的材料,而且往往缺乏这种精度。这种制造方法涉及一种通过热光学力合成、表征和打印纳米结构量子比特的方法。分离这些过程解除了兼容性限制,实现了确定性制造,并减轻了退相干的来源。该项目旨在通过评估由第一性原理模拟确定的关键变量来实现100 nm3的打印。这些包括纳米材料的光学性质,如几何形状和折射率,以及胶体环境和作用力,如溶剂热物理参数。这些结果将被整合到一个基于物理的模型中,以优化打印精度。利用这种方法,研究小组旨在发展结构-性能关系,以确定增强的打印精度和材料特性如何影响器件行为,包括相干性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Crane其他文献

Visualwind: a Novel Video Dataset for Cameras to Sense the Wind
Visualwind:用于相机感知风的新型视频数据集

Matthew Crane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
  • 批准号:
    2242049
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
  • 批准号:
    2240420
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
  • 批准号:
    2240501
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240246
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240245
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
  • 批准号:
    2234390
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
  • 批准号:
    2240399
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
  • 批准号:
    2240414
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
  • 批准号:
    2240227
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了