Quasi-infinitely divisible distributions
拟无限可分分布
基本信息
- 批准号:419461105
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A quasi-infinitely divisible distribution is a probability distribution whose characteristic function admits a Lévy-Khintchine type representation, however with a signed Lévy measure (the quasi-Lévy measure) rather than with a Lévy measure. Equivalently, a probability distribution is quasi-infinitely divisible if its characteristic function is the quotient of the characteristic functions of two infinitely divisible distributions. Quasi-infinitely divisible distributions appear naturally in the factorisation problem of infinitely divisible distributions. While infinitely divisible distributions form a well-studied class of probability distributions, much less is known about quasi-infinitely divisible distributions, and a systematic study of these distributions has only been initiated recently.The aim of this project is to deepen the understanding of quasi-infinitely divisible distributions. In particular, we intend to find conditions ensuring quasi-infinite divisibility of given distributions, and for a given quasi-infinitely distribution, to study its properties in terms of the quasi-Lévy measure. While much of the existing literature on quasi-infinitely divisible distributions at the moment is concerned only with the univariate case, we intend to study multivariate quasi-infinitely divisible distributions and in particular study if a Cramér-Wold device holds for this class of distributions. We shall also look for a natural connection of quasi-infinitely divisible distributions to stochastic processes.
准无限可分分布是一个概率分布,其特征函数允许一个Lévy-Khintchine型表示,但具有一个带符号的Lévy测度(准Lévy测度)而不是Lévy测度。等价地,一个概率分布是拟无限可分的,如果它的特征函数是两个无限可分分布的特征函数的商。拟无限可分分布自然地出现在无限可分分布的因子分解问题中。虽然无穷可分分布形成了一类研究得很好的概率分布,但对拟无穷可分分布的了解却少得多,对这些分布的系统研究只是最近才开始的,本项目的目的是加深对拟无穷可分分布的理解。特别是,我们打算找到确保给定分布的准无限整除性的条件,并且对于给定的准无限分布,研究其性质的准Lévy测度。虽然目前关于准无限可分分布的大部分现有文献只关注单变量的情况,但我们打算研究多变量准无限可分分布,特别是研究Cramér-Wold设备是否适用于这类分布。我们也将寻找一个自然的联系准无限可分分布随机过程。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Multivariate Quasi-infinitely Divisible Distributions
- DOI:10.1007/978-3-030-83309-1_6
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:David Berger;Merve Kutlu;A. Lindner
- 通讯作者:David Berger;Merve Kutlu;A. Lindner
On a denseness result for quasi-infinitely divisible distributions
关于拟无限可分分布的稠密结果
- DOI:10.1016/j.spl.2021.109139
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Alexander Lindner其他文献
Professor Dr. Alexander Lindner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Alexander Lindner', 18)}}的其他基金
Multivariat definierte Finanzzeitreihen in stetiger Zeit
连续时间内多元定义的金融时间序列
- 批准号:
5420853 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Fellowships
Coninuous time GARCH-processes driven by Lévy-processes
由 Lévy 过程驱动的连续时间 GARCH 过程
- 批准号:
5407644 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Research related to value distribution of zeta function and infinitely divisible distribution
zeta函数值分布及无限可分分布相关研究
- 批准号:
16K05077 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kernel Bayes Inference and Infinitely Divisible Distributions
核贝叶斯推理和无限可分分布
- 批准号:
26870821 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Quantum probabilistic approach to the Segal-Bargmann transform and infinitely divisible laws
Segal-Bargmann 变换和无限可分定律的量子概率方法
- 批准号:
23540131 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on several problems on Levy processes and Infinitely divisible distributions
Levy过程与无限可分分布若干问题的研究
- 批准号:
22340021 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
自由確率論におけるレヴィ過程の諸性質及び無限分解可能分布についての研究
自由概率论中Lévy过程和无限可分分布的性质研究
- 批准号:
08J00876 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory of infinitely divisible distributions and its application
无限可分分布理论及其应用
- 批准号:
20540110 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on several problems on infinitely divisible processes and infinitely divisible distributions
无限可分过程和无限可分分布若干问题的研究
- 批准号:
19340025 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Wiener functional and derivative pricing
维纳函数和衍生品定价分析
- 批准号:
17540107 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
ASYMPTOTICAL ANALYSIS FOR EXPONENTIAL FUNCTIONALS IN INFINITE DIMENSIONAL STOCHASTIC MODELS
无限维随机模型中指数泛函的渐近分析
- 批准号:
16540097 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on semi-Levy processes and semi-selfsimilar processes
半Levy过程和半自相似过程的研究
- 批准号:
15340036 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




