Atomistic Design of Thermal and Electrical Transport in Materials with Dislocations: From High Power Electronics to Thermoelectrics
位错材料中热电传输的原子设计:从高功率电子到热电
基本信息
- 批准号:429844621
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in material synthesis controlled by dislocations suggest the novel possibility of engineering dislocations in nanomaterials. To leverage these advances and guide the synthesis of materials with engineered dislocations, accurate models for the dislocation-transport property relationship are needed. We propose research to advance the atomistic computational techniques and theoretical con-cepts needed to understand and predict the structure-transport properties across the material space. The extended strain fields and dynamic fluttering of the dislocations, and their impact on electronic properties are computationally tractable with the density functional theory based tight-binding (DFTB) method. To enable predictions in the thermal domain, we propose to couple DFTB with (i) a many-body non-equilibrium Green’s-function approach for quantum phononic transport with inter-atomic anharmonicity, (ii) an equilibrium objective molecular dynamics method for computing phonon band structure, lifetime, and group velocity calculations, and (iii) wave packet methods for studying phonon propagation and scattering. We will apply the developed tools to investigate ways to impart maximal or minimal lattice ther-mal conductivity while maintaining a large charge carrier mobility and Seebeck coefficient in bulk, one-dimensional, and two-dimensional materials. (i) Simulations of dislocations in bulk materials will target an understanding of the experimentally observed dramatic improvements in the thermoelectric figure of merit in materials with low intrinsic thermal conductivities and em-bedded dense dislocation arrays along grain boundaries. (ii) Nanowires are attractive nanostructures for achieving high thermoelectric performances, but the impact of dislocations located at their core is unknown. Simulations of nanowires storing dislocations aim to uncover a new important mechanism (phonon-dislocation scattering) for boosting the thermoelectric figure of merit. (iii) Two-dimensional materials are of tremendous importance for nanoelectronics devices, but the arrays of dislocations located at their grain boundaries (inherent extended defects) are prone to induce unwanted effects like severe self-heating. Investigations will un-cover dislocations array models that deliver optimal electrical charge transport with minimum heat generation at the grain boundaries.
由位错控制的材料合成的最新进展表明,在纳米材料中进行工程化的位错具有新的可能性。为了利用这些进展并指导具有工程位错的材料的合成,位错-输运性质关系的准确模型是必要的。我们建议进行研究,以推进理解和预测跨材料空间的结构-传输特性所需的原子计算技术和理论概念。用基于密度泛函理论的紧束缚(DFTB)方法计算了位错的扩展应变场和动态颤振及其对电子性质的影响。为了能够在热域中进行预测,我们建议将DFTB与(I)用于原子间非谐性量子声子输运的多体非平衡格林函数方法,(Ii)用于计算声子能带结构、寿命和群速度的平衡客观分子动力学方法,以及(Iii)用于研究声子传播和散射的波包方法相结合。我们将应用开发的工具来研究如何在保持大的载流子迁移率和塞贝克系数的同时,在体相、一维和二维材料中提供最大或最小的晶格热导。(I)对块状材料中位错的模拟将以理解实验观察到的具有低本征热导率和沿晶界嵌入致密位错阵列的材料的热电优值系数的显著改善为目标。(Ii)纳米线是一种很有吸引力的纳米结构,可以实现高热电性能,但位于其核心的位错的影响尚不清楚。对存储位错的纳米线的模拟旨在揭示一种新的提高热电优值的重要机制(声子-位错散射)。(Iii)二维材料对纳米电子器件非常重要,但位于其晶界的位错阵列(固有的扩展缺陷)容易引起严重的自热等不必要的效应。研究将揭示位错阵列模型,该模型在晶界产生的热量最少的情况下提供最佳的电荷传输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Frauenheim其他文献
Professor Dr. Thomas Frauenheim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Frauenheim', 18)}}的其他基金
Defect calculations in Ga-based semiconductors using optimal hybrid functionals
使用最佳混合函数计算镓基半导体中的缺陷
- 批准号:
394149042 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Charge transport modelling in silicon ultra-scaled devices with native oxide (SINOXI)
具有原生氧化物的硅超尺度器件中的电荷传输建模 (SINOXI)
- 批准号:
330000412 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Multi-scale approach for prediction of electrical properties of carbon nanotube reinforced polymers
预测碳纳米管增强聚合物电性能的多尺度方法
- 批准号:
222251336 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Theoretical investigations of surface modifications and doping of semiconductor nanowire structures
半导体纳米线结构表面修饰和掺杂的理论研究
- 批准号:
213674385 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Coordination action in the Priority Program 1243
优先计划 1243 中的协调行动
- 批准号:
25002279 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
BITT - Bremen Initiative on Time-dependent Transport: Atomistic approaches towards photo-induced quantum transport dynamics across single molecules
BITT - 不来梅时间依赖性传输倡议:跨单分子光诱导量子传输动力学的原子方法
- 批准号:
25002299 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Excited state dynamics in the early stages of the bR and Rh photocycle
bR 和 Rh 光循环早期的激发态动力学
- 批准号:
15499286 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Units
Molekulares Design von Nanohybridmembranen für Brennstoffzell-Anwendungen
用于燃料电池应用的纳米杂化膜的分子设计
- 批准号:
16442274 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Atomic Structure, electronic, optical and electrical properties of freestanding, passivated, and functionalized semiconductor nanowires
独立、钝化和功能化半导体纳米线的原子结构、电子、光学和电学特性
- 批准号:
5429399 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Entwicklung von Multiskalenmethoden für die Simulation von Polymer/Flüssig-Feststoff-Hybridgrenzflächen
开发用于模拟聚合物/液固混合界面的多尺度方法
- 批准号:
5406268 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
- 批准号:
2329206 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
- 批准号:
2329208 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Establishment of thermal property evaluation and performance design method for multi-functional panels utilizing heat insulation and heat storage by wood
木材隔热蓄热多功能板材热性能评价及性能设计方法的建立
- 批准号:
23K04145 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
- 批准号:
2329207 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2403970 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Design of advanced thermal protection systems realized by porous carbon with non-unit structure
非单元结构多孔碳先进热防护系统设计
- 批准号:
23H01306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Backcasting Materials Design through Uncovering Mechanisms of Electronic and Thermal Conduction by Control Dislocation and Grain boundaries
通过控制位错和晶界揭示电子和热传导机制来进行背铸材料设计
- 批准号:
23H01671 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Thermal Performance, Design, and Sustainability of Borehole Heat Exchangers within Challenging Hydrogeological Environments
具有挑战性的水文地质环境中埋管换热器的热性能、设计和可持续性
- 批准号:
RGPIN-2019-05353 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




