Atomic Structure, electronic, optical and electrical properties of freestanding, passivated, and functionalized semiconductor nanowires

独立、钝化和功能化半导体纳米线的原子结构、电子、光学和电学特性

基本信息

项目摘要

Due to their small radius nanowires are characterized by an extreme large surface to bulk ratio - structure and properties of their surfaces thus strongly influence the mechanical, optical, and electrical behaviour of nanowires. For a realistic theoretical description of nanonwires it is therefore crucial to include such effects. This is straightforward for nanowires with (i) very small radii (=2nm) where conventional density functional theory (DFT) methods in the plane wave pseudopotential formalism can be directly applied and (ii) very large radii (größer als 50nm) where the surface can be modelled by individual facets. However, many of the experiments which will be performed within the focused project have a size just in between these two boundaries and which are thus not accessible by the standard approaches. We therefore aim to apply a hierarchical approach where we will start from well established density-functional methods to identify the equilibrium geometry, formation energies, and electronic structure of semiconductor nanowires with small radii (kleiner als 2nm). In handshaking with these results approximate DFT methods (DFTB) will be applied to extend these studies to the experimentally relevant length scale (up to 20nm). The approach will be applied on naked/passivated freestanding and functionalised Si, Ge, SiGe, SiC and GaN nanowires. Scanning tunnelling microscopy/spectroscopy simula-tions will allow a direct connection to experiment. Based on the identified equilibrium structure transport properties will be calculated by interfacing the DFTB-method with nonequilibrium Green-function techniques. In a fully self-consistent treatment with open boundary conditions for metal contacts this approach will allow to study nonequilibrium electron transport in the nanowires and to address questions on coherent versus incoherent transport, electron-phonon interactions and the modification of current flux by surface functionalisation.
由于其小半径纳米线的特征在于极大的表面体积比-其表面的结构和性质因此强烈影响纳米线的机械、光学和电学行为。因此,对于纳米线的现实理论描述,包括这样的效果是至关重要的。这对于具有(i)非常小的半径(=2nm)的纳米线是直接的,其中可以直接应用平面波赝势形式主义中的常规密度泛函理论(DFT)方法,以及(ii)非常大的半径(größer als 50 nm),其中表面可以由单个刻面建模。然而,许多将在重点项目中进行的实验的规模正好在这两个边界之间,因此无法通过标准方法进行。因此,我们的目标是应用一个层次的方法,我们将开始从完善的密度泛函方法,以确定平衡几何形状,形成能,和电子结构的半导体纳米线与小半径(克莱纳铝2nm)。在握手与这些结果近似DFT方法(DFTB)将被应用到扩展这些研究的实验相关的长度尺度(高达20纳米)。该方法将应用于裸/钝化的独立和功能化的Si,Ge,SiGe,SiC和GaN纳米线。扫描隧道显微镜/光谱模拟将允许直接连接到实验。基于所确定的平衡结构,将通过将DFTB方法与非平衡格林函数技术相结合来计算输运性质。在一个完全自洽的处理与金属接触的开放边界条件,这种方法将允许研究非平衡电子输运的纳米线,并解决相干与非相干传输,电子-声子相互作用和修改电流通量的表面功能化的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Frauenheim其他文献

Professor Dr. Thomas Frauenheim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thomas Frauenheim', 18)}}的其他基金

Atomistic Design of Thermal and Electrical Transport in Materials with Dislocations: From High Power Electronics to Thermoelectrics
位错材料中热电传输的原子设计:从高功率电子到热电
  • 批准号:
    429844621
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Defect calculations in Ga-based semiconductors using optimal hybrid functionals
使用最佳混合函数计算镓基半导体中的缺陷
  • 批准号:
    394149042
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Charge transport modelling in silicon ultra-scaled devices with native oxide (SINOXI)
具有原生氧化物的硅超尺度器件中的电荷传输建模 (SINOXI)
  • 批准号:
    330000412
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multi-scale approach for prediction of electrical properties of carbon nanotube reinforced polymers
预测碳纳米管增强聚合物电性能的多尺度方法
  • 批准号:
    222251336
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical investigations of surface modifications and doping of semiconductor nanowire structures
半导体纳米线结构表面修饰和掺杂的理论研究
  • 批准号:
    213674385
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination action in the Priority Program 1243
优先计划 1243 中的协调行动
  • 批准号:
    25002279
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
BITT - Bremen Initiative on Time-dependent Transport: Atomistic approaches towards photo-induced quantum transport dynamics across single molecules
BITT - 不来梅时间依赖性传输倡议:跨单分子光诱导量子传输动力学的原子方法
  • 批准号:
    25002299
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Excited state dynamics in the early stages of the bR and Rh photocycle
bR 和 Rh 光循环早期的激发态动力学
  • 批准号:
    15499286
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Units
Molekulares Design von Nanohybridmembranen für Brennstoffzell-Anwendungen
用于燃料电池应用的纳米杂化膜的分子设计
  • 批准号:
    16442274
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung von Multiskalenmethoden für die Simulation von Polymer/Flüssig-Feststoff-Hybridgrenzflächen
开发用于模拟聚合物/液固混合界面的多尺度方法
  • 批准号:
    5406268
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

High mobility thermoelectric materials: clathrates with controlled electronic structure in caged crystal structure by guest atomic orbital selection
高迁移率热电材料:通过客体原子轨道选择在笼状晶体结构中具有受控电子结构的包合物
  • 批准号:
    22K04699
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the atomic and electronic structure of particulate matter from theory and experiment
从理论和实验中了解颗粒物的原子和电子结构
  • 批准号:
    2275184
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Temperature effects on the atomic and electronic structure of organic/TMDC interfaces (A13*)
温度对有机/TMDC 界面原子和电子结构的影响 (A13*)
  • 批准号:
    427243959
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
  • 批准号:
    RGPIN-2015-03813
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
  • 批准号:
    RGPIN-2015-03813
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Atomic and electronic structure of perovskite/oxides interfaces
钙钛矿/氧化物界面的原子和电子结构
  • 批准号:
    2107057
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Atomic structure and electronic properties of interfaces formed by perovskite and organic charge transfer materials
钙钛矿与有机电荷转移材料形成界面的原子结构和电子性质
  • 批准号:
    415530527
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Synchrotron X-ray Studies on Atomic and Electronic Structure of Matter: Li-ion Battery Cathode Materials
物质原子和电子结构的同步加速器X射线研究:锂离子电池正极材料
  • 批准号:
    RGPIN-2015-03813
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical study of atomic and electronic structure of single-element quasicrystalline ultra-thin films
单元素准晶超薄膜原子和电子结构的理论研究
  • 批准号:
    17K05059
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on electronic and atomic structure of ZnMgTe epilayers for electrical conductivity control
用于电导率控制的 ZnMgTe 外延层的电子和原子结构研究
  • 批准号:
    17K06354
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了