Geometric and topological rigidity theorem for 3-manifolds
三流形的几何和拓扑刚性定理
基本信息
- 批准号:12640092
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The researcher has studied thoroughly geometric and topological rigidity theorems for 3-manifolds. In particular, he found out that the existence of least area planes properly embedded in the universal coverings in the proof of topological rigidity theorems. Let M be a closed hyperbolic 3-manifold and p:H^3→M the universal covering. Here, we suppose that M has a Riemannian metric which is not necessarily hyperbolic. The metric r on H^3 induced from that on M is called a co-compact metric. D.Gabai conjectured that "any simple smooth curve in the boundary S^2_∞ of H^3 spans a properly embedded r-least area plane in H^3"(J.Amer.Math.Soc.10(1997)). Throughout this project, the researcher proved that the conjecture is true. Moreover, he proved that the result holds when π_1(M) is Gromov-hyperbolic even if M is not a hyperbolic 3-manifold. That is, it was shown that, for the universal converging M^^〜 of the manifold M, any Jordan curve in ∂M^^〜 bounds a properly embedded r-least area plane in M.Furthermore, the researcher solved the question "What kinds of topological types do geometric limits of quasi-Fuchsian groups have ?" completely. Precisely, Σis a closed orientable surface of genus>1, and {p_n} is an algebraically convergent sequence of quasi-Fuchsian representations ρ_n:π_1(Σ)→PSL_2(C). Suppose that the sequence {Γ_n} consisting of the quasi-Fuchsian groups Γ_n=ρ_n(π_1(Σ)) converges geometrically to a Kleinian group G. Then, the researcher proved that there exists a closed set Χ in Σ×[0,1] called a crevasse so that H^3/G is homeomorphic to Σ×[0,1]-Χ. Conversely, it was also proved that, for any crevasse Χ in Σ×[0,1], there exists a geometric, limits G of quasi-Fuchsian groups such that H^3/G is homeomorphic to Σ×[0,1]-Χ.
研究人员对三维流形的几何刚性和拓扑刚性定理进行了深入的研究。特别地,在证明拓扑刚性定理时,他发现了最小面积平面的存在恰好嵌入在泛覆盖中。设M是闭双曲三维流形,p:H^3→M是泛覆盖。这里,我们假设M有一个黎曼度量,它不一定是双曲的。由M上的度量导出的H^3上的度量r称为余紧度量。D.Gabai猜想“在H^3的边界S^2_∞上的任何简单光滑曲线都横跨在H^3中的适当嵌入的r-最小面积平面上”(J.amer.Math.Soc.10(1997年))。在整个项目中,研究人员证明了这个猜想是正确的。此外,他还证明了当π_1(M)是Gromov-双曲流形时,即使M不是双曲三维流形,结果仍然成立。也就是说,对于流形M的泛收敛的M^^~,∂M^~中的任一Jordan曲线都限定于M中适当嵌入的r-最小面积平面。此外,作者还解决了“拟Fuchsian群的几何极限具有哪种拓扑类型?”完全地。确切地说,Σ是亏格>;1的闭可定向曲面,且{p_n}是拟富克斯表示的代数收敛序列ρ_n:π_1(Σ)→pSL_2(C).设由拟Γ群Γ_n=ρ_n(π_1(Σ))组成的序列{ρ_n}几何收敛于Klein群G,则证明了在Σ×[0,1]中存在称为裂缝的闭集Σ,使得H^3/G同胚于Χ×[0,1]-Kleinan群G。反之,还证明了对于Χ×[0,1]中的任一裂隙Σ,存在拟Fuchsian群的几何极限G,使得H^3/G同胚于Σ×[0,1]-Χ.
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koji Fujiwara, Teruhiko Soma: "Bounded classes in the cohomology of manifolds"Geom.Dedicata. 92. 73-85 (2002)
Koji Fujiwara、Teruhiko Soma:“流形上同调中的有界类”Geom.Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Degree-one maps between hyperbolic 3-manfolds with the same volume limit"Trans.Amer.Math.Soc.. (印刷中).
Teruhiko Soma:“具有相同体积限制的双曲 3 流形之间的一级映射”Trans.Amer.Math.Soc..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Existence of least area planes in hyperbolic 3-spaces with co-compact metric"Topology. 43. 705-716 (2004)
Teruhiko Soma:“具有协紧度量的双曲 3 空间中最小面积平面的存在性”拓扑。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Volume of hyperbolic 3-manifolds with iterated pseudo-Anosov amalgamations"Geom. Dedicata. 90. 183-200 (2002)
Teruhiko Soma:“具有迭代伪阿诺索夫合并的双曲 3 流形的体积”Geom。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Sequences of degree-one maps between geometric 3-manifolds "Math.Annalen. 316. 733-742 (2000)
Teruhiko Soma:“几何 3 流形之间的一阶映射序列”Math.Annalen。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOMA Teruhiko其他文献
SOMA Teruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOMA Teruhiko', 18)}}的其他基金
Uniform research of topological Kleinian groups by using geometric limits
利用几何极限的拓扑克莱因群的一致研究
- 批准号:
22540092 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of 3-manifolds by topological and hyperbolic geometric method
3-流形的拓扑和双曲几何方法研究
- 批准号:
18540097 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bounded cohomology and 3-dimensional hyperbolic geometry
有界上同调和 3 维双曲几何
- 批准号:
07640140 - 财政年份:1995
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ends of covering 3-manifolds
覆盖 3 歧管的末端
- 批准号:
05640132 - 财政年份:1993
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Projects
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Studies in knots and 3-manifolds
结和 3 流形的研究
- 批准号:
RGPIN-2020-05491 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
- 批准号:
2202718 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Minimal Surfaces in Hyperbolic 3-Manifolds
双曲 3 流形中的最小曲面
- 批准号:
2202584 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
A study of homological invariants of knots and 3-manifolds
结和3-流形的同调不变量的研究
- 批准号:
22K03318 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2203912 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant














{{item.name}}会员




