The theory of transformation groups and its application

变换群理论及其应用

基本信息

  • 批准号:
    06452009
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

The present project aimed studies on transformation groups, appearing in the various aspects of analysis. Investigating transformation groups of completely integrable systems defined in a complex domain, we obtaind a new point of view and various resultes particularly on this subject. The group of this project in the University of Tokyo concerned researchs on nonlinear integrable systems, in particular from the point of view of the algebraic theory. The main objects of our investigations is losted as follows :(1) Only special cases of partial differential equations admit fruitfull algebraic structure of their transformation groups. Since few of such equations, we attempt to construct the examples systematically.(2) We determine the transformation groups and their realization of nonlinear integrable system, in partcular these of the Garnier systems.(3) One of the most important points of studies on completely integrable systems is an application to theoretical physics. We try to establish the general method of determination of transformation groups of integrable systems.The investgators of this research project have continued their studies on transformation groups of integrable systems and announced their own results obtained during two years, 1994-95, in various occasins They have published some of results in journals.
本项目旨在研究变换群,出现在分析的各个方面。通过对复域上完全可积系统的变换群的研究,我们得到了一个新的观点和一些新的结果。东京大学的这一项目的研究小组关注非线性可积系统的研究,特别是从代数理论的角度。本文的主要研究内容如下:(1)只有偏微分方程的特殊情况才有其变换群的有效代数结构。由于这类方程很少,我们试图系统地构造例子。(2)确定了非线性可积系统的变换群及其实现,特别是Garnier系统的变换群及其实现。(3)研究完全可积系统的一个重要方面是在理论物理中的应用。本文试图建立确定可积系统变换群的一般方法,本课题的研究者们在1994-95年的两年时间里,继续对可积系统变换群的研究,并在各种场合公布了自己的结果,部分结果已在期刊上发表。

项目成果

期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
折原明夫: "Isometries on the l'-sum of Co (Ω.E) type spaces" Journal of Math.Sciences,Univ.Tokyo. 2. 131-154 (1995)
Akio Orihara:“Co (Ω.E) 型空间的 l-sum 等距”,东京大学数学科学杂志,2. 131-154 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akio ORIHARA: "Isometries on the l^1-sum of C_0 (OMEGA, E)" J.Math.Sci.2. 131-154 (1995)
Akio ORIHARA:“C_0 (OMEGA,E) 的 l^1-sum 的等距”J.Math.Sci.2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuo OKAMOTO: "On the holonomic deformation of linear ordinary differential equations on an elliptic curve" Kyushu J.Math.49. 281-308 (1995)
Kazuo OKAMOTO:“椭圆曲线上线性常微分方程的完整变形”九州 J.Math.49。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
林祥介: "A model of the entry of comet Shoemaker-Levy 9 into Jupiter's Atmosphere" Proc.of the 28th ISAS Lunar and Planetary Sym.1-13 (1995)
Shosuke Hayashi:“彗星 Shoemaker-Levy 9 进入木星大气层的模型”Proc.of the 28th ISAS Lunar and Planetary Sym.1-13 (1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.NAKAJIMA: "On Gauss sum characters of finite groups and generalized Bernoulli numbers" J.Theorie des nombres de Bordaux. (1994)
S.NAKAJIMA:“论有限群的高斯和特征和广义伯努利数”J.Theorie des nombres de Bordaux。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAMOTO Kazuo其他文献

9 : Cytokine and Growth Factor Regulation of Osteoclastogenesis
9:破骨细胞生成的细胞因子和生长因子调节
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ASAGIRI Masataka;HIRAI Toshitake;KUNIGAMI Toshihiro;KAMANO Shunya;GOBER Hans-Juergen;OKAMOTO Kazuo;NISHIKAWA Keizo;MORISHITA Yasuyuki;TAKAYANAGI Hiroshi;高柳広
  • 通讯作者:
    高柳広
炎症・再生医学事典 5.骨・関節-b.破骨細胞
炎症与再生医学百科全书5.骨骼和关节-b.破骨细胞
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ASAGIRI Masataka;HIRAI Toshitake;KUNIGAMI Toshihiro;KAMANO Shunya;GOBER Hans-Juergen;OKAMOTO Kazuo;NISHIKAWA Keizo;MORISHITA Yasuyuki;TAKAYANAGI Hiroshi;高柳広;高柳広
  • 通讯作者:
    高柳広
Targeting Cathepsin K in autoimune arthritis reveals its function in dendritic cells
自身免疫性关节炎中靶向组织蛋白酶 K 揭示了其在树突状细胞中的功能
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ASAGIRI Masataka;HIRAI Toshitake;KUNIGAMI Toshihiro;KAMANO Shunya;GOBER Hans-Juergen;OKAMOTO Kazuo;NISHIKAWA Keizo;MORISHITA Yasuyuki;TAKAYANAGI Hiroshi
  • 通讯作者:
    TAKAYANAGI Hiroshi
Targeting Cathepsin K in autoimmune arthritis reveals its function in dendritic cells
自身免疫性关节炎中靶向组织蛋白酶 K 揭示了其在树突状细胞中的功能
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ASAGIRI Masataka;HIRAI Toshitake;KUNIGAMI Toshihiro;KAMANO Shunya;GOBER Hans-Juergen;OKAMOTO Kazuo;NISHIKAWA Keizo;MORISHITA Yasuyuki;TAKAYANAGI Hiroshi
  • 通讯作者:
    TAKAYANAGI Hiroshi

OKAMOTO Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAMOTO Kazuo', 18)}}的其他基金

Understanding the mechanisms underlying erythroid differentiation and enucleation by using a novel mouse model of anemia and establishment of strategies to control their regulatory system
通过使用新型贫血小鼠模型了解红细胞分化和去核的机制并建立控制其调节系统的策略
  • 批准号:
    25670188
  • 财政年份:
    2013
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Establishment of therapeutic strategies to comprehensively control inflammation and bone destruction in arthritis
建立综合控制关节炎炎症和骨质破坏的治疗策略
  • 批准号:
    23689075
  • 财政年份:
    2011
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Analysis of the regulatory mechanism of IL-17/IL-22 production during bacterial infection
细菌感染过程中IL-17/IL-22产生的调控机制分析
  • 批准号:
    23659200
  • 财政年份:
    2011
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Holonomic deformation and nonlinear integrable systems
完整变形和非线性可积系统
  • 批准号:
    18204012
  • 财政年份:
    2006
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Studies on the Painleve equations
Painleve 方程的数学研究
  • 批准号:
    14204012
  • 财政年份:
    2002
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Synthetic Research on nonlinear complete integrable systems and combinatorics
非线性完全可积系统与组合学的综合研究
  • 批准号:
    09304013
  • 财政年份:
    1997
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research on Standardization of Mathematical Terms
数学术语标准化研究
  • 批准号:
    05306001
  • 财政年份:
    1993
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Understanding and Controlling Oscillation Phenomena of Hall Thruster by Virtual Cathode Region Deformation Theory
用虚拟阴极区域变形理论理解和控制霍尔推进器振荡现象
  • 批准号:
    23H01599
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Galois Representations: Deformation Theory and Motivic Origins
职业:伽罗瓦表示:变形理论和动机起源
  • 批准号:
    2120325
  • 财政年份:
    2021
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
Integral p_adic Hodge-theory and applications to p-adic deformation theory
积分 p_adic Hodge 理论及其在 p-adic 变形理论中的应用
  • 批准号:
    EP/T005351/1
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Grant
Explicit Galois Deformation Theory, Modular Forms, and Iwasawa Theory
显式伽罗瓦变形理论、模形式和岩泽理论
  • 批准号:
    1901867
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Factorization Homology, Deformation Theory, and Duality
合作研究:因式分解同调、变形理论和对偶性
  • 批准号:
    1812055
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
CAREER: Galois Representations: Deformation Theory and Motivic Origins
职业:伽罗瓦表示:变形理论和动机起源
  • 批准号:
    1752313
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
log crystalline cohomologies of semistable varieties and deformation theory of log varieties in positive characteristic
半稳定簇对数结晶上同调与正特征对数簇变形理论
  • 批准号:
    18K03224
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Factorization Homology, Deformation Theory, and Duality
合作研究:因式分解同调、变形理论和对偶性
  • 批准号:
    1812057
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
Deformation theory of submanifolds characterized by differential forms
微分形式的子流形变形理论
  • 批准号:
    17K14187
  • 财政年份:
    2017
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Classification and deformation theory of infinite translation surfaces
无限平移面的分类与变形理论
  • 批准号:
    313884508
  • 财政年份:
    2016
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了