2D-Material Heterostructure NEMS Sensors

2D 材料异质结构 NEMS 传感器

基本信息

项目摘要

Micro and nanoelectromechanical system (NEMS) sensors such as pressure sensors, accelerometers and gyroscopes are important for a variety of applications, including wearable electronics for activity level monitoring, patient recovery monitoring, implantable systems for heart failure monitoring, and the Internet of Things (IoT). For most of these applications, it is of critical importance that the NEMS sensors are further miniaturized. This is due to application requirements and goes beyond the obvious advantage of reduced cost per device. Recently our teams have demonstrated suspended graphene membranes as excellent electromechanical transducer elements for ultra-miniaturized piezoresistive NEMS sensors. However, graphene NEMS sensors suffer from the comparably low piezoresistivity of graphene, which leads to typical gauge factors of only 2-4. 2D materials with higher gauge factors, such as molybdenum disulfide (MoS2) suffer from less stability compared to graphene and hexagonal boron nitride (h-BN). To address these limitations, we will explore novel heterostructures made of stacked two-dimensional (2D) materials, with the aim to explore the underlying physics of novel NEMS transducers with gauge factors that are at least a factor of ten higher than those of existing NEMS transducers. To achieve this goal, we will explore suspended heterostructures of 2D materials, including graphene, h-BN, MoS2, and other 2D transition metal dichalcogenides (e.g. WS2, MoSe2, WSe2). We will also leverage a new method for 2D material stacking based on an adhesive wafer bonding technique, recently developed by our teams. To evaluate the utility of the novel heterostructures as piezoresistive transducers, we will develop three NEMS demonstrators: (1) Strain gauges based on 2D material heterostructures to perform strain-dependent transport measurements; (2) piezoresistive NEMS pressure sensors based on suspended 2D material heterostructure membranes; (3) piezoresistive NEMS accelerometers based on suspended 2D material heterostructure ribbons with attached proof masses. If successful, this work will contribute to an improved understanding of the material properties and the transduction mechanisms in 2D material heterostructures. This will pave the way for novel NEMS sensors with dramatically reduced size and improved performance. Such sensors will have wide-ranging potential applications, spanning several important scientific and technological areas, including biomedical implants, nanoscale robotics, wearable electronics and material characterization.
微纳机电系统(NEMS)传感器,如压力传感器、加速度计和陀螺仪,对于各种应用都很重要,包括用于活动水平监测的可穿戴电子设备、患者康复监测、用于心力衰竭监测的植入式系统和物联网(IoT)。对于大多数这些应用,NEMS传感器进一步小型化是至关重要的。这是由于应用需求,并且超出了降低每个设备成本的明显优势。最近,我们的团队展示了悬浮石墨烯膜作为超小型压阻式NEMS传感器的优秀机电换能器元件。然而,石墨烯NEMS传感器的压力电阻率相对较低,导致典型的测量因子仅为2-4。与石墨烯和六方氮化硼(h-BN)相比,具有较高规范因子的二维材料,如二硫化钼(MoS2)的稳定性较差。为了解决这些限制,我们将探索由堆叠二维(2D)材料制成的新型异质结构,目的是探索新型NEMS换能器的潜在物理特性,其测量因子至少比现有NEMS换能器高十倍。为了实现这一目标,我们将探索二维材料的悬浮异质结构,包括石墨烯,h-BN, MoS2和其他二维过渡金属二硫族化合物(如WS2, MoSe2, WSe2)。我们还将利用我们团队最近开发的基于粘合晶圆键合技术的二维材料堆叠新方法。为了评估新型异质结构作为压阻式传感器的实用性,我们将开发三种NEMS演示器:(1)基于二维材料异质结构的应变片,用于应变相关输运测量;(2)基于悬浮二维材料异质结构膜的压阻式NEMS压力传感器;(3)基于附加证明质量的悬浮二维材料异质结构带的压阻NEMS加速度计。如果成功,这项工作将有助于提高对二维材料异质结构中材料性质和转导机制的理解。这将为大大减小尺寸和提高性能的新型NEMS传感器铺平道路。这种传感器将有广泛的潜在应用,跨越几个重要的科学和技术领域,包括生物医学植入物,纳米级机器人,可穿戴电子和材料表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Max Christian Lemme其他文献

Professor Dr.-Ing. Max Christian Lemme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Max Christian Lemme', 18)}}的其他基金

Ultimate Scaling and Performance Potential of MoS2 Metal Oxide Semiconductor Field Effect Transistors (ULTIMOS2)
MoS2 金属氧化物半导体场效应晶体管 (ULTIMOS2) 的终极尺寸和性能潜力
  • 批准号:
    412113712
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Scalable MoS2 based flexible devices and circuits for wireless communications
用于无线通信的基于 MoS2 的可扩展柔性器件和电路
  • 批准号:
    407080863
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Scaling and Performance Potential of Bilayer Graphene Field Effect Transistors for Analog Applications
用于模拟应用的双层石墨烯场效应晶体管的扩展和性能潜力
  • 批准号:
    242643572
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Graphene-based Nanotechnology
基于石墨烯的纳米技术
  • 批准号:
    213117131
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
  • 批准号:
    BB/Y512412/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
World in your hand: Investigating the underlying mechanism of thermal material recognition and its interaction with multisensory information
手中的世界:研究热材料识别的基本机制及其与多感官信息的相互作用
  • 批准号:
    23K24934
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
  • 批准号:
    24K20065
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
  • 批准号:
    2341731
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了