Numerical methods for the accurate and efficient simulation of multiphase multicomponent reactive flow in the capillary fringe
精确有效模拟毛细管边缘多相多组分反应流的数值方法
基本信息
- 批准号:43741459
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The capillary fringe is a zone where liquid and gas phase are strongly interacting, providing a favorable environment for many chemical reactions and microorganisms. The quantitative prediction of processes in the capillary fringe with computer models is a big challenge as it requires not only the description of multi-component two-phase reactive flow but also the macroscopic simulation of phase entrapment, gas bubble dissolution and the flow of a disconnected gas phase, which is a mostly unsolved problem. After a thorough testing of stability, speed and precision of the operator splitting approach developed in the first funding period compared to a global implicit approach, the project SP2 focuses on the simulation of the experiments conducted in the other projects in close cooperation with the experimenters. Pore scale and continuum scale models will be used. The comparison of simulations and experimental data on flow and transport processes, chemical reactions and microbial activity will be used to detect deficiencies of the model and obtain helpful suggestions for its improvement. The model will be incorporated in a parameter estimation framework to estimate transport parameters and reaction rates from the experiments.
毛细管边缘是液相和气相强烈相互作用的区域,为许多化学反应和微生物提供了有利的环境。用计算机模型定量预测毛细管边缘的过程是一个很大的挑战,因为它不仅需要描述多组分两相反应流,而且还需要宏观模拟相捕集,气泡溶解和不连续气相的流动,这是一个尚未解决的问题。在对第一个供资期开发的算子分裂方法的稳定性、速度和精度进行了全面测试之后,与整体隐式方法相比,项目SP2侧重于与实验者密切合作,模拟其他项目中进行的实验。将使用孔隙尺度和连续体尺度模型。通过对流动和输运过程、化学反应和微生物活动的模拟和实验数据的比较,可以发现模型的不足之处,并为改进模型提供有益的建议。该模型将被纳入一个参数估计框架,以估计传输参数和反应速率的实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Bastian其他文献
Professor Dr. Peter Bastian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Bastian', 18)}}的其他基金
EXA-DUNE - Flexible PDE Solvers, Numerical Methods, and Applications
EXA-DUNE - 灵活的 PDE 求解器、数值方法和应用
- 批准号:
230658507 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
Zweiphasenströmung in komplex berandeten Gebieten
复杂边界区域的两相流
- 批准号:
130725547 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012269 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012634 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Versatile construction of highly accurate numerical methods based on potential theory
基于势论的高精度数值方法的多功能构建
- 批准号:
17K14241 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms
开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法
- 批准号:
1621111 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
New High-Accurate Numerical Methods for Inverse Problems by the Direct Computations of Integral Equations of the First Kind
第一类积分方程直接计算反问题的高精度数值新方法
- 批准号:
26400198 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accurate and High Performance Computational Methods for Numerical Linear Algebra
数值线性代数的精确高性能计算方法
- 批准号:
25730076 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of accurate numerical methods and verified computation relating to stochastic differential equations
随机微分方程精确数值方法及计算验证研究
- 批准号:
24760064 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms
开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法
- 批准号:
1216454 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
High-accurate Numerical Methods for Inverse Problems on Next-generation Computing Environments
下一代计算环境下反问题的高精度数值方法
- 批准号:
23740075 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)