Fully coupled fluid-structure-contact simulations to understand the processes in the contact zones during lubricated orthogonal cutting

完全耦合的流体-结构-接触模拟,以了解润滑正交切削过程中接触区域的过程

基本信息

项目摘要

In metal-cutting manufacturing, a particularly large sustainability potential can be found in reducing the consumption of cooling lubricants (CL), which cause damage to the environment and health as well as high costs. In order to maintain productivity and ensure the required component quality despite the reduction in coolant quantities, the use of coolant must be more targeted in the future. In particular, there is great potential in exploiting the tribological effect of the coolants. In order to utilize this in machining production, the underlying mechanisms of action must be understood in detail and taken into account in digital tools for process and tool development and their optimization.In the context of this follow up project in the framework of the priority project SPP 2231, developments for the improvement of friction modeling under consideration of a CL for numerical chip formation simulations will be performed for this purpose. This is achieved by coupling a microscopic tribology model with a macroscopic chip formation model and offers the possibility to model the friction in the chip formation zone as a function of temperature, relative speed, contact normal stress as well as surface topographies of the tribo-partners and an intermediate medium. In order to gain the technological understanding and the data for the modeling and to lay a basis for the later transfer to industrial production, additional basic investigations on the tribological behavior of the chip formation zone are planned. In the first phase of the project, experimental investigations of the working mechanisms of cooling lubricants were carried out and it has been succeeded to develop a micro-tribological model of the chip formation zone, which should make it possible to investigate these mechanisms on an experimentally inaccessible scale and make them usable for chip formation simulations. The micro-model is based on a fluid-structure contact simulation using spline-based finite element methods. In the next project phase, the coupling of the micro-tribological model with a chip formation model is planned. This coupling will allow to model the friction behavior in the numerical chip formation simulation locally graded considering a CL. To be able to achieve this goal, in-depth experimental investigations with the objectives of influence analysis and simulation validation are necessary. In addition to the application of a method for the visualization of the coolant distribution in the chip formation zone, these include in particular the characterization of the sticking and sliding zone as well as the determination of the local mechanical loads during machining. Finally, in preparation for the third funding phase, the experimental framework shall be transferred to a turning process.
在金属切削制造业中,可以发现在减少冷却润滑剂(CL)的消耗方面具有特别大的可持续性潜力,因为冷却润滑剂对环境和健康造成损害,而且成本很高。在冷却剂数量减少的情况下,为了保持生产效率并确保所需的部件质量,冷却剂的使用必须在未来更有针对性。特别是,在利用冷却剂的摩擦学效应方面有很大的潜力。为了在机械加工生产中利用这一点,必须详细了解潜在的作用机制,并在数字工具中考虑到工艺和工具开发及其优化。在优先项目SPP 2231框架下的后续项目的背景下,将为此目的在考虑用于数值切屑地层模拟的CL的情况下进行改进摩擦建模的开发。这是通过将微观摩擦学模型与宏观切屑形成模型相结合来实现的,并提供了将切屑形成区域的摩擦建模为温度、相对速度、接触法向应力以及摩擦伙伴和中间介质的表面形貌的函数的可能性。为了获得技术上的理解和建模所需的数据,并为后期的工业生产奠定基础,计划对切屑形成区的摩擦学行为进行进一步的基础研究。在项目的第一阶段,对冷却润滑剂的工作机制进行了实验研究,并成功地建立了切屑形成区的微摩擦学模型,这将使在实验上无法达到的规模上研究这些机制成为可能,并使它们可用于切屑形成模拟。微观模型是基于基于样条有限元法的流固接触仿真。在下一个项目阶段,计划将微摩擦学模型与切屑形成模型耦合。这种耦合将允许在考虑CL的局部分级的数值切屑地层模拟中模拟摩擦行为。为了实现这一目标,有必要进行深入的实验研究,目的是进行影响分析和仿真验证。除了应用冷却剂在切屑形成区域分布的可视化方法外,这些还包括特别的粘滞和滑动区域的表征以及加工过程中局部机械负荷的确定。最后,在准备第三个资助阶段时,应将实验框架转移到转向过程中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Stefanie Elgeti其他文献

Professorin Dr.-Ing. Stefanie Elgeti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Stefanie Elgeti', 18)}}的其他基金

Efficient Modelling of Chip Formation in Orthogonal Cutting Based on Isogeometric Analysis and Modern Methods for Material Characterization
基于等几何分析和现代材料表征方法的正交切削中切屑形成的高效建模
  • 批准号:
    405652718
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Automated design and optimisation of dynamic mixing and shear elements for single-screw extruder
单螺杆挤出机动态混合和剪切元件的自动化设计和优化
  • 批准号:
    327074219
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
  • 批准号:
    82370865
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
VDAC1调控MITF信号通路影响黑色素生成的分子机制
  • 批准号:
    31900549
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
FoxM1与Wnt通路协同调控GPR4促卵巢癌增殖转移及血管生成的分子机制研究
  • 批准号:
    81772793
  • 批准年份:
    2017
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
热力耦合方程组的并行多尺度算法
  • 批准号:
    11301329
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
  • 批准号:
    30970527
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
Hitchin-Kobayashi对应的推广及相关几何分析问题
  • 批准号:
    10771188
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目
多维动态时空耦合映象分析及其应用研究
  • 批准号:
    60571066
  • 批准年份:
    2005
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
基于软光刻法的多层垂直耦合光波导研究
  • 批准号:
    60577025
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
  • 批准号:
    10402036
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
  • 批准号:
    2333837
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The convergence of stress and sex on Abeta and tau metabolism and pathology
压力和性对 Abeta 和 tau 代谢及病理学的影响
  • 批准号:
    10734280
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Peripherally-restricted non-addictive cannabinoids for cancer pain treatment
用于癌症疼痛治疗的外周限制性非成瘾大麻素
  • 批准号:
    10726405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
  • 批准号:
    10641225
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
  • 批准号:
    10738905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
  • 批准号:
    10742654
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanism and Countermeasure of Carfentanil-induced Respiratory Disorder and Death
卡芬太尼引起呼吸系统疾病及死亡的机制及对策
  • 批准号:
    10743181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanisms underlying the variation in rate and levels of gingival inflammatory responses among the human population
人群牙龈炎症反应速率和水平差异的机制
  • 批准号:
    10596337
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
New Therapy for the Treatment of Primary Biliary Cholangitis.
治疗原发性胆汁性胆管炎的新疗法。
  • 批准号:
    10697484
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了