Representation theoretic research of spherical functions on p-adic homogeneous spaces
p进齐次空间上球函数的表示理论研究
基本信息
- 批准号:15540022
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
S.Kato, the Head investigator, studied the spherical functions on symmetric spaces over p-adic fields, together with K.Takano. By using orbit decomposition of symmetric spaces under maximal compact subgroups (Cartan decomposition, general formula of which is still in conjectural form), we obtained a Macdonald-type formula for spherical functions which expressed the value on tori by a sum over the Weyl groups of symmetric spaces (the little Weyl groups). The problem to have explicit formulas for spherical functions in general remained. However, for several examples including quadratic base change of symplectic groups, we had such formulas. As a byproduct of our study of symmetric spaces, we obtained a representation theoretical result about the representations of symmetric spaces (more precisely, about distinguished admissible representations for symmetric subgroups of reductive groups) : We succeeded in establishing a relative version (=symmetric space version) of Jacquet's subrepresen … More tation theorem which asserts that for any irreducible admissible representation V of a p-adic reductive group G, there exists at least one parabolic P and one irreducible cuspidal W such that V may be embedded into the induced representation of W from P under the assumption of the Cartan decomposions. Namely, by defining the notion of relative cuspidality, we showed that any irreducible representation of a symmetric space can be embedded in a induced representation associated with a pair consisting of a sigma-split parabolic subgroup and an irreducible distinguished representation of its Levi subgroup. This result can be viewed as a first step to generalize the harmonic analysis on p-adic groups to that on symmetric spaces. It is interesting to build representation theory of symmetric spaces on p-adic groups and/or other groups over various fields by using the notion of "relative cuspidality".Other investigators also obtained several results on automorphic representations and automorphic forms (H.Saito and A.Murase ), and on structure theory and representation theory of real Lie groups (T.Matsuki and K.Nishiyama). Less
S.Kato,首席研究员,研究了p-adic域上对称空间上的球面函数,与K. Takano一起。利用对称空间在极大紧子群下的轨道分解(Cartan分解,其一般公式仍为几何形式),得到了用对称空间的Weyl群(小Weyl群)上的和表示环面上的值的球函数的Macdonald型公式.问题有明确的公式,球函数一般仍然存在。然而,对于包括辛群的二次基变换在内的几个例子,我们有这样的公式。作为对称空间研究的一个副产品,我们得到了关于对称空间表示(更确切地说,关于约化群的对称子群的可容许表示)的一个表示理论结果:我们成功地建立了Jacquet的子表示的一个相对版本(=对称空间版本) ...更多信息 设P是一个p进约化群G的不可约容许表示V,则至少存在一个抛物线P和一个不可约尖点W,使得在Cartan分解的假设下,V可以嵌入到W的导出表示中。也就是说,通过定义相对尖点性的概念,我们证明了对称空间的任何不可约表示都可以嵌入到与由σ-分裂抛物子群和其Levi子群的不可约区别表示组成的对相关联的诱导表示中。这个结果可以看作是将p-adic群上的调和分析推广到对称空间上的第一步。利用“相对尖点性”的概念建立p进群和/或其他群上的对称空间的表示理论是很有趣的。其他研究者也得到了一些关于自守表示和自守形式的结果(H.Saito和A.Murase),以及关于真实的李群的结构理论和表示理论的结果(T.Matsuki和K.Nishiyama)。少
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Whittaker-Shintani functions for orthogonal groups
- DOI:10.2748/tmj/1113247445
- 发表时间:2003-03-01
- 期刊:
- 影响因子:0.5
- 作者:Kato, S;Murase, A;Sugano, T
- 通讯作者:Sugano, T
松木敏彦: "Stein extensions of Riemann symmetric spaces and dualities of orbits on flag manifolds"Transformation Groups. 8・(4). 333-376 (2003)
松木敏彦:“黎曼对称空间的斯坦因扩展和旗形流形上的轨道对偶性”变换群8·(4)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Theta lifting of unitary lowest weight modules and their associated cycles
单一最低重量模块的 Theta 提升及其相关循环
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Nishiyama;Zhu;Chen-bo
- 通讯作者:Chen-bo
Inner product formula for Kudla lift
Kudla 提升的内积公式
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:A.Murase;T.Sugano
- 通讯作者:T.Sugano
Convergence of the zeta functions of prehomogeneous vector spaces
预齐次向量空间 zeta 函数的收敛性
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:K.Nishiyama;Zhu;Chen-bo;西山 享;T.Matsuki;H.Saito
- 通讯作者:H.Saito
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Shin-ichi其他文献
KATO Shin-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Shin-ichi', 18)}}的其他基金
Representation Theory of Symmetric Spaces over Finite or Local Fields
有限域或局部域上对称空间的表示论
- 批准号:
22540017 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory of Symmetric Spaces over Finite or Local Fields
有限域或局部域上对称空间的表示论
- 批准号:
18540026 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Group Representations and Related Special Functions
群表示及相关特殊函数研究
- 批准号:
04640055 - 财政年份:1992
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
MPS-Ascend: The C*-Algebraic Mackey Bijection for Real Reductive Groups
MPS-Ascend:实数约简群的 C*-代数 Mackey 双射
- 批准号:
2213097 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Fellowship Award
Characters of p-adic reductive groups in the local Langlands correspondence
局部朗兰兹对应中 p 进还原群的特征
- 批准号:
2747326 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Automorphic Forms on Reductive Groups and Their Covers
还原群上的自守形式及其覆盖
- 批准号:
2100206 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Automorphic L-invariants for reductive groups
还原群的自同构 L-不变量
- 批准号:
432557519 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Research Fellowships
Conference Proposal: Automorphic Forms on Reductive Groups and Their Covers
会议提案:还原群的自守形式及其覆盖
- 批准号:
1802887 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Representations of Reductive Groups and Étale Hessenberg Varieties
还原群和 ätale Hessenberg 簇的表示
- 批准号:
1751940 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Imprimitive representations of quasisimple finite reductive groups (A03)
拟简单有限还原群的原始表示 (A03)
- 批准号:
324786107 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
CRC/Transregios














{{item.name}}会员




