New integral equations for design of optical circuits
用于光路设计的新积分方程
基本信息
- 批准号:04650283
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head investigator Prof.Kazuo Tanaka of this project has discoverd new mathematical relation between scattering coefficient and coefficient of guided-mode in the optical-waveguide discontinuity problems in 1988-1989. Using this relation, we obtained a new algorithm for design of optical circuits based on new integral equation method (guided-mode extracted integral equation : GMEIE). We can regard the dielectric optical-waveguide discontinuity problems as a scattering problems of large-sized dielectric objects and these kinds of problems can be solved numerically by the conventional boundary-element method(BEM). Techniques of solving integral equations by BEM is the most orthodox method in modern numerical techniques and a large mount of experiences and knowledge concerning BEM are well known. Therefore, these experiences and knowledge can be used in the design of optical waveguide circuits. We obtained following new results in, this project :1. We evaluated various properties of numerical calculation of the new algorithm based on GMEIE.2. We showed many examples of analysis of various kind of optical-waveguide discontinuities and also showed that our results agree with rigorous solution. Furthermore, we applied our method to problems which have been difficult to analyze and obtained reasonable results. We found that our new method is very suitable to solver of Computer aided design (CAD) of optical circuits.3. We showed that our method is applicable to the design of quantum-electron waveguide circuits and optical-circuits in near field optics (NFO).
本项目的首席研究员田中和夫教授于1988-1989年提出了光波导不连续性问题中散射系数与导模系数之间的新的数学关系。利用这一关系,我们得到了一种基于新积分方程法(导模提取积分方程:GMEIE)的光路设计新算法。介质光波导不连续性问题可以看作是大尺寸介质目标的散射问题,这类问题可以用传统的边界元法进行数值求解。边界元法求解积分方程技术是现代数值计算技术中最正统的方法,已有大量的经验和知识。因此,这些经验和知识可用于光波导电路的设计。本课题取得了以下新成果:1.基于GMEIE对新算法的各种数值计算性能进行了评价.文中给出了许多分析各种光波导不连续性的例子,并表明我们的结果与严格解相符合。此外,我们将我们的方法应用到一些难以分析的问题,并得到了合理的结果。我们发现,我们的新方法非常适合于光路计算机辅助设计(CAD)的求解.结果表明,该方法适用于量子电子波导电路和近场光学(NFO)光路的设计。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuo Tanaka,Masahiro Tanaka Hisamitsu Tashima,Hiroki Otera Yoshikatsu Yoshino: "New integral eguation method for CAD of open wavegnide bends" Radio SCience to be published. (1993)
Kazuo Tanaka、Masahiro Tanaka Hisamitsu Tashima、Hiroki Otera Yoshikatsu Yoshino:“开放式波涅弯曲 CAD 的新积分方程方法”Radio Science 即将出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中嘉津夫: "誘電体導波曲がり回路設計のための新しい積分方程式:導波モード分離型積分方程式" 電子情報通信学会論文誌. J76-C-1. 1-9 (1993)
Katsuo Tanaka:“介质波导弯曲电路设计的新积分方程:波导模式分离型积分方程”电子、信息和通信工程师学会学报 J76-C-1(1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Tanaka and Masaaki Nakahara: "New boundary integral equations for CAD of waveguide circuits:Guided-mode extracted integral equations" IEEE Trans on Microwave Theory and Techniques. MTT-40. 1647-1654 (1992)
Kazuo Tanaka 和 Masaaki Nakahara:“波导电路 CAD 的新边界积分方程:导模提取积分方程”IEEE Trans 微波理论与技术。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中嘉津夫,吉野能旦,大寺夫紀: "電子波回路解析のための体積積分方程式" 電子情報通信学会論文誌. J77-C-1. 101-108 (1994)
Katsuo Tanaka、Notan Yoshino、Yuki Otera:“电子波电路分析的体积积分方程”电子、信息和通信工程师学会学报 J77-C-1 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Tanaka and Masahiro Nakahara: "New boundary integral eguations for CAD of waveguide circuits:Guided-Mode extracted integral eguations" IEEE Transaction on Microwave Theory and Techniques. MTT-40. 1647-1654 (1992)
Kazuo Tanaka 和 Masahiro Nakahara:“波导电路 CAD 的新边界积分方程:引导模式提取积分方程”IEEE 微波理论与技术汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Kazuo其他文献
沈水環境下におけるMelaleuca cajuputi の通気組織の発達
水下环境下白千层通气组织的发育
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
TANAKA Kazuo;UBE Masahiro;MASUMORI Masaya;TANGE Takeshi;田中一生,宇部真広,益守眞也,丹下健;田中一生・益守眞也・山ノ下卓・丹下健 - 通讯作者:
田中一生・益守眞也・山ノ下卓・丹下健
TANAKA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Kazuo', 18)}}的其他基金
New strategy for narrowing energy gaps by aza-substitution to isolated LUMO
通过氮杂取代孤立的 LUMO 来缩小能隙的新策略
- 批准号:
21K19002 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Mechanism of Cytomegalovirus reactivation after organ transplantation
器官移植后巨细胞病毒再激活的机制
- 批准号:
23591876 - 财政年份:2011
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of the quantitative imaging methods for bio-functions with MRI
MRI生物功能定量成像方法的进展
- 批准号:
22750107 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Validation of Relativistic Laser Self-focusing for Fast Ignition
相对论激光自聚焦快速点火的验证
- 批准号:
22246122 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A Unified Nonlinear Control Approach to Robots with Multiple Dynamic Motions
多动态运动机器人的统一非线性控制方法
- 批准号:
21560258 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer simulation and experimental verification of high performance optical near-field probe by using surface plasmon polariton gap waveguide
表面等离子体激元间隙波导高性能光学近场探头的计算机模拟与实验验证
- 批准号:
20560035 - 财政年份:2008
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study for relativistic laser self-focusing in overdense plasma
过密等离子体中相对论性激光自聚焦研究
- 批准号:
19206099 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Surface plasmon gap waveguide wcich creates stiongly enhanced and confined optical near-field
表面等离子体间隙波导,可产生强烈增强和限制的光学近场
- 批准号:
18560034 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
System Representation and Control for Multi-Structural Robots
多结构机器人的系统表示和控制
- 批准号:
18560244 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Treatment of infectious diseases after organ transplantation using antigen-specific memory T cells in the peripheral blood
利用外周血中抗原特异性记忆T细胞治疗器官移植后的感染性疾病
- 批准号:
17591349 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on new accurate boundary integral equation based on consideration of the complex fictitious eigenfrequencies
基于复虚拟特征频率的新型精确边界积分方程研究
- 批准号:
19K20285 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical studies on the mechanism of the electrode interfacial phenomena by the integral equation with first-principles calculation
第一性原理计算积分方程理论研究电极界面现象机理
- 批准号:
18K05307 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Integral Equation Methods: Algorithms and Applications
快速积分方程方法:算法与应用
- 批准号:
RGPIN-2014-03576 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
- 批准号:
1818910 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
CAREER: Towards General-Purpose, High-Order Integral Equation Methods for Computer Simulation in Engineering: Analysis, Algorithm Design, and Applications
职业:面向工程计算机仿真的通用高阶积分方程方法:分析、算法设计和应用
- 批准号:
1654756 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Fast Integral Equation Methods: Algorithms and Applications
快速积分方程方法:算法与应用
- 批准号:
RGPIN-2014-03576 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Fast Integral Equation Methods: Algorithms and Applications
快速积分方程方法:算法与应用
- 批准号:
RGPIN-2014-03576 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
- 批准号:
1609195 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Fast Integral Equation Methods: Algorithms and Applications
快速积分方程方法:算法与应用
- 批准号:
RGPIN-2014-03576 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual