Evolutionary optimization of enzymes for their operation in the C4 photosynthetic pathway: the case of NADP-malic enzyme

C4 光合作用途径酶的进化优化:以 NADP-苹果酸酶为例

基本信息

项目摘要

The ancestors of C4 plants evolved a biochemical pump to concentrate CO2 at the site of Rubisco, leading to greater photosynthetic efficiency. The evolutionary adaptation of cellular activities to the C4 syndrome was based on the molecular adaptation of existing enzymes, in most cases involving gene duplications followed by neo-functionalization, accompanied by changes in the regulation and biochemical properties of the gene products.A central step in C4 photosynthesis is the generation of high CO2 concentrations through the decarboxylation of a C4 acid in the bundle sheath cell (BSC) chloroplasts. Most agronomically important C4 plants, including maize, sorghum, and sugar cane, belong to the NADP-malic enzyme (ME) subtype of C4, which predominantly uses NADP-ME for this purpose. During the night, when the photosynthetic pathway is inactive, the enzymatic activity of the C4-specific isoform of NADP-ME is regulated through two processes: on the one hand, the enzyme partially loses its active quaternary oligomerization state; on the other hand, it is inhibited by malate. These regulatory mechanisms are important for the efficient concentration of CO2 in BSC chloroplasts. We recently identified specific amino acids important for the molecular adaptions of C4-NADP-ME based on strict differential conservation of amino acids, combined with solving the crystal structures of maize and sorghum C4-NADP-ME and the biochemical analysis of enzyme mutants. Several of these amino acid substitutions likely evolved to implement the necessary regulatory adaptions. In this project, we aim to elucidate the molecular mechanisms underlying the evolution of the two major regulatory properties of C4-NADP-ME, and to analyze these regulatory processes in vivo. We focus on the single C4 lineage Andropogoneae within the Panicoideae subfamily of the Poaceae, which includes the C4 grasses maize and sorghum. We will combine crystallization analyses with in silico modelling to analyze how specific amino acids present only in the C4-NADP-ME isoform influence the structural and kinetic properties of the enzyme. Through biochemical analysis and small-angle-X-ray-scattering measurements of N-terminal mutants of NADP-ME, we will determine which other amino acids are involved in the changes and stabilization of the oligomeric states. We will establish the underlying molecular mechanism of malate inhibition through the biochemical analysis of specific enzyme mutants. Furthermore, we will identify other amino acids involved in the adaptation of C4-NADP-ME in the Andropogoneae by producing and analyzing further recombinant NADP-ME mutants. Finally, to evaluate these regulatory processes in vivo, we will introduce specific mutations into the gene coding for C4-NADP-ME in maize via the CRISPR-Cas9 technology and will perform phenotypic, biochemical, and physiological analyses of the obtained plant lines.
C4 植物的祖先进化出了一种生化泵,将二氧化碳集中在 Rubisco 位置,从而提高光合作用效率。细胞活动对 C4 综合征的进化适应是基于现有酶的分子适应,在大多数情况下涉及基因复制,然后进行新功能化,并伴随着基因产物的调节和生化特性的变化。C4 光合作用的一个核心步骤是通过束鞘细胞中的 C4 酸脱羧产生高浓度的 CO2 (BSC)叶绿体。大多数农艺上重要的 C4 植物,包括玉米、高粱和甘蔗,都属于 C4 的 NADP-苹果酸酶 (ME) 亚型,该亚型主要使用 NADP-ME 来实现这一目的。在夜间,当光合途径不活跃时,NADP-ME的C4特异性亚型的酶活性通过两个过程进行调节:一方面,酶部分失去其活性的四级寡聚状态;另一方面,它受到苹果酸的抑制。这些调节机制对于 BSC 叶绿体中 CO2 的有效浓缩非常重要。我们最近基于氨基酸的严格差异保守性,结合解决玉米和高粱C4-NADP-ME的晶体结构以及酶突变体的生化分析,确定了对C4-NADP-ME分子适应重要的特定氨基酸。其中一些氨基酸取代可能是为了实施必要的监管调整而进化的。在这个项目中,我们的目标是阐明 C4-NADP-ME 两个主要调控特性进化的分子机制,并分析这些体内调控过程。我们重点关注禾本科黍亚科中的单个 C4 谱系 Androgogonae,其中包括 C4 禾本科植物玉米和高粱。我们将结晶分析与计算机建模相结合,分析仅存在于 C4-NADP-ME 亚型中的特定氨基酸如何影响酶的结构和动力学特性。通过对 NADP-ME N 末端突变体的生化分析和小角 X 射线散射测量,我们将确定哪些其他氨基酸参与了寡聚状态的变化和稳定。我们将通过特定酶突变体的生化分析来建立苹果酸抑制的潜在分子机制。此外,我们将通过产生和分析进一步的重组 NADP-ME 突变体来鉴定与 C4-NADP-ME 在仙人掌亚目中的适应有关的其他氨基酸。最后,为了在体内评估这些调控过程,我们将通过 CRISPR-Cas9 技术在玉米中编码 C4-NADP-ME 的基因中引入特定突变,并对获得的植物品系进行表型、生化和生理分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Veronica Maurino其他文献

Professorin Dr. Veronica Maurino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Veronica Maurino', 18)}}的其他基金

Decoding the dual function of NAD-malic enzyme: from a universal role in malate respiration to a specific function in C4 photosynthesis
解读 NAD-苹果酸酶的双重功能:从苹果酸呼吸中的普遍作用到 C4 光合作用中的特定功能
  • 批准号:
    392217267
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deciphering the role of H2O2-signalling originating from different cellular compartments and cell types
解读源自不同细胞区室和细胞类型的 H2O2 信号传导的作用
  • 批准号:
    198630041
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effects of chloroplastic originated-H2O2 in signalling and biotic interactions
叶绿体来源的 H2O2 对信号传导和生物相互作用的影响
  • 批准号:
    182723601
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
The impact of short-cutting photorespiration on carbon and nitrogen metabolism
短程光呼吸对碳氮代谢的影响
  • 批准号:
    134777978
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Units
Plant dicarboxylic acid homeostasis: on the specific physiological role of enzymes involved in malate decarboxylation
植物二羧酸稳态:苹果酸脱羧酶的特定生理作用
  • 批准号:
    138608285
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A genetic engineering approach to improve the carbon fixation in C3 plants by reducing the flux through the photorespiratory pathway. Consequences of the expression of novel activities in chloroplasts of A. thaliana
一种通过减少光呼吸途径通量来改善 C3 植物碳固定的基因工程方法。
  • 批准号:
    41426985
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A biotechnological approach to increase carbon assimilation in C3-plants
增加 C3 植物碳同化的生物技术方法
  • 批准号:
    25780487
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Re-cycling of glycolate in C3-chloroplasts: Biochemical and physiological effects on plant metabolism
C3-叶绿体中乙醇酸的再循环:对植物代谢的生化和生理影响
  • 批准号:
    5387331
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Engineering of the photorespiratory carbon-cycle in C3-plants
C3 植物光呼吸碳循环工程
  • 批准号:
    5300602
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Divergent solutions to convergent evolution: elucidating the molecular strategies for co-option of the NAD-malic enzyme for C4 biochemistry
趋同进化的不同解决方案:阐明 C4 生物化学中 NAD-苹果酸酶共同选择的分子策略
  • 批准号:
    528182088
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
内容分发网络中的P2P分群分发技术研究
  • 批准号:
    61100238
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
  • 批准号:
    10402036
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Harmony AI: Natural Language Processing Enabling Advanced Biomanufacturing
Harmony AI:自然语言处理实现先进生物制造
  • 批准号:
    10761082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Engineering the Next Generation of Safer Hsp90 Inhibitors
设计下一代更安全的 Hsp90 抑制剂
  • 批准号:
    10587304
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
ALDH2 inhibitors for the treatment of AUD
ALDH2抑制剂用于治疗AUD
  • 批准号:
    10664502
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of brain-penetrant COMT inhibitors for the treatment of depressive disorders
开发用于治疗抑郁症的脑渗透性 COMT 抑制剂
  • 批准号:
    10696272
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Postnatal and Prenatal Therapeutic Base Editing for Metabolic Diseases
代谢性疾病的产后和产前治疗碱基编辑
  • 批准号:
    10668614
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Metagenomic discovery and optimization of novel endolysins targeting Cutibacterium acnes to treat acne vulgaris
针对痤疮皮肤杆菌治疗寻常痤疮的新型内溶素的宏基因组发现和优化
  • 批准号:
    10821291
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel Disease-modifying Small Molecules for Treatment of Alzheimer's Disease”
用于治疗阿尔茨海默病的新型疾病修饰小分子 –
  • 批准号:
    10485602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of first-in-class antagonists of the retinoid pathway as novel oral therapies for Type 2 Diabetes
开发类视黄醇途径的一流拮抗剂作为 2 型糖尿病的新型口服疗法
  • 批准号:
    10699637
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Allosteric Modulation of the CB1 Receptor
CB1 受体的变构调节
  • 批准号:
    10592492
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Metabolic flux analysis and PDX models to understand therapeutic vulnerabilities following inhibition of Ref-1 redox signaling in pancreatic cancer
代谢通量分析和 PDX 模型可了解胰腺癌中 Ref-1 氧化还原信号传导抑制后的治疗脆弱性
  • 批准号:
    10717281
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了