保型的L関数及び新谷関数の研究

自守L函数和Shintani函数的研究

基本信息

  • 批准号:
    06640052
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

1.大域的新谷関数について古典群の標準的L関数の解析接続・関数等式を行列サイズに関して帰納的に証明するプログラムを我々は既に提示し、直交群の場合にはある種の技術的条件下で証明した。これには、Rankin-Selberg convolution の新谷関数による表示が本質的役割を果たす。今年度、一般の総実代数体上の総正定値(maximal)偶対称行列に対して、技術的仮定を取り去ることに成功し、完全な結果を得た。2.局所新谷関数について分解型の直交群に対し、局所新谷関数の存在と一意性を証明した。そのためには(通常のCartan分解とは異なり、片側が一つサイズの小さい直交群の極大コンパクト群である)一般化されたCartan分解が最も重要な役割を果たした。3.Whittaker-Shintani 関数について直交群の保型表現と一般線型群の保型表現のテンソルL関数を考察するために、球関数の一般化である新谷関数だけでなく、更にユニポテントな元の作用をも込めたWhittaker-Shintani 関数を定式化し、既に部分的成果を得ている。存在、一意性についての結果も部分的に得た。4.今後の問題大域的議論を行うためには、分解型の条件は強すぎ、この弱い形に対しても局所新谷関数の存在や一意性を示すことが望ましい。また、ユニタリ群の場合に帰納法を完全に働かせるための整数論的考察が重要となる。
1. The analysis of the L number of the standard of the new valley in Daiyu, the number of the classical group, the number of equations, the number of figures, the number of classical groups, the number of figures, the number of classical groups, the number of figures, the number of classical groups, the number of figures, the number of classical groups, the number of figures, the number of classical groups, the number of figures, the number of equations, the number of equations, the number of figures, the number of figures in the standard of classical group The number of new valley in Rankin-Selberg convolution and the number of fruit in the service of the new valley means that the fruit is cut in service. This year, the normal algebra (maximal) is sometimes called the rank and column error, and the technical stability is selected to eliminate the success of the test, and the results are satisfactory. two。 The number of new valley in the bureau is divided into two types: the direct cross group and the new valley. In general, Cartan decomposition is the most important part of Cartan decomposition, which is the most important. The 3.Whittaker-Shintani number group shows that the general type group shows the type number, the ball number generalizes the number of the new valley, the number of the new valley, the function of the yuan, the number of the Whittaker-Shintani, the format of the number, and the results of some of them. Exist, intentionally analyze the results of the results part of the results. 4. In the future, there are problems in the discussion of large areas of problems, such as strong conditions, weak conditions, and the number of new valleys in the local area. The investigation of the theory of integers is very important.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Murase: "Shintani Functions and automorphic L-Functions for GL(n)" To^^<^>hoku Math.J. (1995)
A.Murase:“GL(n) 的 Shintani 函数和自同构 L 函数”To^^<^>hoku Math.J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

菅野 孝史其他文献

Fourier-Jacobi Expansion of Kudla Lift〔和文〕 (保型形式およびそれに付随するディリクレ級数の研究 研究集会報告集)
Fourier-Jacobi Expansion of Kudla Lift [日语](自守形式及相关狄利克雷级数研究)研究会议报告集
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    村瀬 篤;菅野 孝史
  • 通讯作者:
    菅野 孝史

菅野 孝史的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('菅野 孝史', 18)}}的其他基金

非簡約代数群上の保型形式・保型L関数の研究
非约减代数群的自同构形式和自同构L-函数的研究
  • 批准号:
    17654003
  • 财政年份:
    2005
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
保型表現と保型L関数の研究
自同构表示和自同构L函数的研究
  • 批准号:
    08640042
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式及び保型L関数の研究
自同构形式和自同构 L 函数的研究
  • 批准号:
    07640050
  • 财政年份:
    1995
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Jacobi形式及び付随するL関数の研究
雅可比形式和相关 L 函数的研究
  • 批准号:
    01740034
  • 财政年份:
    1989
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
代数群上の保型形式に付随するL関数
与代数群上的自同构相关的 L 函数
  • 批准号:
    61790068
  • 财政年份:
    1986
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
  • 批准号:
    23K20782
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ゼータ関数・L関数の値分布および零点分布について
关于zeta函数和L函数的值分布和零点分布
  • 批准号:
    24K16907
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
L関数と篩法による素数分布の研究
利用L函数和筛法研究素数分布
  • 批准号:
    24K06697
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Selmer群の高次FittingイデアルとL関数
Selmer群的高阶拟合理想和L函数
  • 批准号:
    24K16886
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多重Mahler測度と多重L関数を繋ぐ数論的研究
连接多个马勒测度和多个 L 函数的数论研究
  • 批准号:
    24K06649
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
L関数の特殊値や零点とランダム行列理論の関係
L函数的特殊值与零点与随机矩阵理论的关系
  • 批准号:
    24K06664
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
L関数の確率論的値分布論
L函数的随机值分布理论
  • 批准号:
    22KJ1263
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
一般化された跡公式とL関数の研究
广义迹公式和L函数的研究
  • 批准号:
    23KJ1931
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
保型形式の周期とp進L関数
自守形式和 p 进 L 函数的周期
  • 批准号:
    23K03055
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型L関数の特殊値
自同构L函数的特殊值
  • 批准号:
    22KF0214
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了