保型表現と保型L関数の研究
自同构表示和自同构L函数的研究
基本信息
- 批准号:08640042
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.直交群上の保型形式について(村瀬篤氏との共同研究)符号(2, m+3)の直交群o(2, m+3)上のEisenstein級数を0 (2, m+3)に制限したものを考えると、0 (2, m+2)上のEisenstein級数との差として一種のPoincare級数が生ずる。こうして定義された級数が、尖点形式となることを示すとともに、同時固有関数による展開を与えた。議論の鍵は、直交群上の新谷関数の利用による。2.3次ユニタリ群上の保型形式について(村瀬篤氏との共同研究)符号(1, 2)のユニタリ群上の正則保型形式を部分Fourier展開すると、各係数はテ-タ関数で与えられる。このテ-タ関数の数論的に良い基底としてprimitive theta functionが新谷宅郎氏により導入されている。Weil表現の良いモデルをとることにより、primitive theta functionを完全に局所的な形で定式化し、(与えられた虚二次体のノルム1の群に関する)固有関数の一意性を証明した。跡公式を用いているため、ノルム1の群のどのような表現が現れるかまでわかる。3.新谷関数について(村瀬篤氏との共同研究)我々は、一般の古典群上の保型形式に対し、新谷関数を利用してL関数を構成するプログラムを既に提示している。前年度迄に得られた直交群・ユニタリ群に続き、本年度は四元数ユニタリ群に取り組んだ。L関数構成の鍵となる局所的なノルム関数の計算を実行し、局所L関数の構成に成功した。
1. The Eisenstein series on the orthogonal group o(2, m +3) with the symbol (2, m +3) is restricted to 0 (2, m+3). The number of points in the equation is zero. Discussion on the utilization of new valley correlation numbers on orthogonal groups. 2.3 The form-preserving form on the sub-group of symbols (1, 2) is a partial Fourier expansion of the form-preserving form on the sub-group of symbols (1, 2). The prime theta function of the number theory is introduced into the theory. Weil's behavior is well defined, and the primitive theta function is completely formalized.(It is related to the group of imaginary quadratic bodies.) It is proved that the number is meaningful. The trace formula is used to express the group of 1. 3. The new valley number is used to construct the classical group. In the past year, we have obtained direct contact group, and this year we have obtained quaternion contact group. The calculation of L relation number is carried out successfully, and the composition of L relation number is completed successfully.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Murase: "Shintani functions and automorphic L-functions for GL(n)" Tohoku Math. J.48. 165-202 (1996)
A. Murase:“GL(n) 的 Shintani 函数和自守 L 函数”东北数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Kashiwara: "Kazhdan-Lusztig conjecture for affine Lie algebras with negative lever II non-integral case" Duke Math. J.84. 771-813 (1996)
M. Kashiwara:“具有负杠杆 II 非整数情况的仿射李代数的 Kazhdan-Lusztig 猜想”杜克数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. -J. Kang: "Universal R-matrices and the center of the guantum general kac-moody algebras" Hiroshima Math. J.(to appear).
S.-J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
菅野 孝史其他文献
Fourier-Jacobi Expansion of Kudla Lift〔和文〕 (保型形式およびそれに付随するディリクレ級数の研究 研究集会報告集)
Fourier-Jacobi Expansion of Kudla Lift [日语](自守形式及相关狄利克雷级数研究)研究会议报告集
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
村瀬 篤;菅野 孝史 - 通讯作者:
菅野 孝史
菅野 孝史的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('菅野 孝史', 18)}}的其他基金
非簡約代数群上の保型形式・保型L関数の研究
非约减代数群的自同构形式和自同构L-函数的研究
- 批准号:
17654003 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Exploratory Research
保型形式及び保型L関数の研究
自同构形式和自同构 L 函数的研究
- 批准号:
07640050 - 财政年份:1995
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
保型的L関数及び新谷関数の研究
自守L函数和Shintani函数的研究
- 批准号:
06640052 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Jacobi形式及び付随するL関数の研究
雅可比形式和相关 L 函数的研究
- 批准号:
01740034 - 财政年份:1989
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
代数群上の保型形式に付随するL関数
与代数群上的自同构相关的 L 函数
- 批准号:
61790068 - 财政年份:1986
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
ゼータ関数・L関数の値分布および零点分布について
关于zeta函数和L函数的值分布和零点分布
- 批准号:
24K16907 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
- 批准号:
23K20782 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
L関数と篩法による素数分布の研究
利用L函数和筛法研究素数分布
- 批准号:
24K06697 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Selmer群の高次FittingイデアルとL関数
Selmer群的高阶拟合理想和L函数
- 批准号:
24K16886 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
多重Mahler測度と多重L関数を繋ぐ数論的研究
连接多个马勒测度和多个 L 函数的数论研究
- 批准号:
24K06649 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
L関数の特殊値や零点とランダム行列理論の関係
L函数的特殊值与零点与随机矩阵理论的关系
- 批准号:
24K06664 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
保型形式の周期とp進L関数
自守形式和 p 进 L 函数的周期
- 批准号:
23K03055 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)