Topological invariants related to field theory

与场论相关的拓扑不变量

基本信息

  • 批准号:
    06640111
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

Applying techniques of field theory in mathematical physics, we establishes a general framework to extract topological invariants of manifolds from infinite dimensional data.In late 80's Witten proposed a method to define topological invariants of 3-manifolds as the partition function of the Chern-Simons functional defined over the space of connections on the manifold. We clarified the relation between the Chern-Simons theory for 3-manifolds with boundary and the two-dimensional conformal field theory. We formulated the conformal field theory as the theory of connections on vector bundles over the moduli space of Riemann surfaces and expressed the Witten invariants by the holonomy of the connection. Moreover, from the above point of view we obtained lower estimates for classical invariants for knots and 3-manifolds.The critical points of the Chern-Simons functional are flat connections and it is known that the perturbative expansion at flat connections are described by Feynman diagrams. We investigated topological invariants arising from such perturbative expansion from the viewpoint of integral geometry-integral of Green forms on the configuration space. Motivated by Chern-Simons perturbative theory for 3-manifolds with boundary, we studied the space of chord diagrams on Riemann surfaces and its quantization, together with the symplectic geometry of the moduli space of flat connections. In particular, in the case of the torus, we investigated the holonomy of the elliptic KZ connection and defined Vassiliev type invariants for knots in the product of the torus and the unit inverval.
应用数学物理中的场论技巧,建立了从无穷维数据中提取流形拓扑不变量的一般框架,维滕在80年代后期提出了将三维流形的拓扑不变量定义为流形上连通空间上的Chern-Simons泛函的配分函数的方法。阐明了三维有边流形的Chern-Simons理论与二维共形场论之间的关系。我们将共形场论表述为黎曼曲面模空间上向量丛的联络理论,并用联络的完整性来表示维滕不变量。此外,从上述观点出发,我们得到了纽结和三维流形的经典不变量的下界估计。Chern-Simons泛函的临界点是平坦联络,并且已知平坦联络处的微扰展开可用Feynman图描述。我们从位形空间上的积分几何--绿色形式积分的观点研究了这种微扰展开所产生的拓扑不变量。受Chern-Simons微扰理论的启发,我们研究了Riemann曲面上的弦图空间及其量子化,以及平坦联络模空间的辛几何.特别是,在环面的情况下,我们研究了椭圆KZ连接的完整性,并定义了Vassiliev型不变量的环面和单位逆的产品中的结。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Kohno: "Vassiliev invariants and de Rham complex on the space of knots" Contemporary Mathemahis. 179. 123-138 (1994)
T. Kohno:“结空间上的瓦西里耶夫不变量和德拉姆复形”当代数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Kohno T. Takata: "Level-rank duality of Witten's 3-manifold invariants" Advanced Stud. in Pure Marh.24. (1996)
T. Kohno T. Takata:“Witten 3 流形不变量的等级对偶性”高级梭哈。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kohno: "Vassiliev invariants and de Rham complex on the space of Knots" Contemporary Mathematics. (1995)
T.Kohno:“结空间上的瓦西里耶夫不变量和德拉姆复形”当代数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Katsura: "Multicanonical system of elliptic surfaces in small sharacteristics" Compositio Math.97. 119-134 (1995)
T. Katsura:“小特征学中椭圆曲面的多规范系统”Compositio Math.97。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kohno and T.Takata: "Level-rank duality of Witten's 3-manifold invariants, Advanced Stud." in Pure Math.24. (1996)
T.Kohno 和 T.Takata:“Witten 3 流形不变量的等级对偶性,高级梭哈。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOHNO Toshitake其他文献

KOHNO Toshitake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOHNO Toshitake', 18)}}的其他基金

Discrete geometry and creation of 3 dimensional geometric models
离散几何和 3 维几何模型的创建
  • 批准号:
    15K13434
  • 财政年份:
    2015
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Visualization in geometry and construction of 3-dimensional mathematical models
几何可视化和 3 维数学模型的构建
  • 批准号:
    23654022
  • 财政年份:
    2011
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Braid groups, iterated integrals and geometric structures of configuration spaces
配置空间的辫群、迭代积分和几何结构
  • 批准号:
    20340010
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of braids, hyperplane arrangements and applications to conformal field theory
辫子理论、超平面排列及其在共形场理论中的应用
  • 批准号:
    16340014
  • 财政年份:
    2004
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
De Rham Theory of Loop Spaces and Quantum Topological Invariants
环空间和量子拓扑不变量的德拉姆理论
  • 批准号:
    12440014
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Topological Field Theory and Related Geometry
拓扑场论及相关几何
  • 批准号:
    09304005
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
MATHEMATICAL PHYSICS,TOPOLOGY AND RELATED ALGEBRAIC STRUCTURE
数学物理、拓扑及相关代数结构
  • 批准号:
    03640073
  • 财政年份:
    1991
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Research Grant
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
  • 批准号:
    23KJ0540
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
Turning up the Temperature in Conformal Field Theory
提高共形场论中的温度
  • 批准号:
    567953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ensemble Averaging and the Anti-de Sitter/Conformal Field Theory Correspondence
系综平均和反德西特/共形场论对应
  • 批准号:
    575727-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Holography, Black Holes, and Conformal Field Theory
全息术、黑洞和共形场论
  • 批准号:
    SAPIN-2020-00047
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
On Conformal Field Theory and Dark Matter
论共形场论和暗物质
  • 批准号:
    SAPIN-2020-00038
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    DGECR-2022-00449
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了