MATHEMATICAL PHYSICS,TOPOLOGY AND RELATED ALGEBRAIC STRUCTURE
数学物理、拓扑及相关代数结构
基本信息
- 批准号:03640073
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.Construction of 3-manifold invariants derived from conformal field theory and its applicationsBased on Chern-Simons gauge theory, Witten proposed topological invariants of 3-manifolds. Several works have been done afterwards from geometric or combinatorial viewpoints. We constructed 3-manifold invariants based on representations of mapping class groups appearing in conformal field theory and Heegaard splitting of 3-manifolds.As an application, using the unitarity of the monodromy of conformal field theory, we obtained lower estimates for classical invariants, such as Heegaard genus and tunnel numbers of knots etc. Investigating the symmetry derived from Dynkin diagram automorphisms, we refined Witten invariant and established the level-rank duality.2.Graph complex and differential forms on knot spaceThe object of this research is differential forms on the space of all knots, which is an infinite dimensional space. We constructed a morphism from the graph complex to the de Rham complex on the knot space. This might be considered to be a generalization of the bar complex for the loop space. Especially, as the zero dimensional cohomology of the graph complex, the Vassiliev invariants can be represented by integrals appearing in Chern-Simons perturbation theory.Applying the de Rham homotopy theory to the pure braid group, we showed that the filtration derived from the Vassiliev invariants for pure braids coinsides with the lower central series. It turns out that the Vassiliev invariants are strong enough to distinguish any pure braid.
1.基于共形场论的三维流形不变量的构造及其应用维滕在Chern-Simons规范理论的基础上提出了三维流形的拓扑不变量。后来从几何或组合的观点进行了几项工作。基于共形场论中映射类群的表示和3-流形的Heegaard分裂,构造了3-流形不变量.作为应用,利用共形场论中单值性的酉性,得到了Heegaard亏格和纽结隧道数等经典不变量的下界估计.研究了由Dynkin图自同构导出的对称性,我们精化了维滕不变量,建立了它的水平秩对偶。2.纽结空间上的图复形与微分形式本文研究的对象是无穷维纽结空间上的微分形式。我们在纽结空间上构造了一个从图复形到de Rham复形的态射。这可以被认为是环空间的杆复形的推广。特别是,作为图复形的零维上同调,Vassiliev不变量可以用Chern-Simons扰动理论中出现的积分来表示。将de Rham同伦理论应用于纯辫子群,我们证明了由纯辫子的Vassiliev不变量导出的滤子与下中心级数一致。事实证明,Vassiliev不变量足够强大,可以区分任何纯辫子。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toshitake KOHNO: "Three-manifold invariants derived from conformal field theory and projective representations of modular groups" Inrernational Journal of modern Physics. 6. 1795-1805 (1992)
Toshitake KOHNO:“源自共形场论和模群射影表示的三流形不变量”《现代物理学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshitake KOHNO and Toshie TAKATA: "Symmetry of Witten's 3-manifold invariants for slcn,C)" Journal of Knot Theory and Its Ramifications. (1993)
Toshitake KOHNO 和 Toshie TAKATA:“slcn 的 Witten 3 流形不变量的对称性,C)”结理论及其分支杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Ohtsuka: "COMPARISON OF TWO CATEGORIGAL MODELS OF TYPED λーCALCULUS" Eulletin of Informatics and Cybernetics.
Hiroshi Ohtsuka:“类型 λ 演算的两种分类模型的比较”信息学和控制论的 Eulletin。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kohno: "Topological invariants for 3-manifolds using representations of mapping class groups I" Toplogy. 31-2. 203-230 (1992)
T.Kohno:“使用映射类组 I 的表示的 3 流形的拓扑不变量”拓扑。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kohno: "Topological invariants of 3-manifolds based on conformal field theory and Heegaard splitting" Lecture Notes in Math,Springer. 1510. 341-349 (1992)
T.Kohno:“基于共形场论和 Heegaard 分裂的 3 流形的拓扑不变量”数学讲义,施普林格。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOHNO Toshitake其他文献
KOHNO Toshitake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOHNO Toshitake', 18)}}的其他基金
Discrete geometry and creation of 3 dimensional geometric models
离散几何和 3 维几何模型的创建
- 批准号:
15K13434 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Visualization in geometry and construction of 3-dimensional mathematical models
几何可视化和 3 维数学模型的构建
- 批准号:
23654022 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Braid groups, iterated integrals and geometric structures of configuration spaces
配置空间的辫群、迭代积分和几何结构
- 批准号:
20340010 - 财政年份:2008
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of braids, hyperplane arrangements and applications to conformal field theory
辫子理论、超平面排列及其在共形场理论中的应用
- 批准号:
16340014 - 财政年份:2004
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
De Rham Theory of Loop Spaces and Quantum Topological Invariants
环空间和量子拓扑不变量的德拉姆理论
- 批准号:
12440014 - 财政年份:2000
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topological Field Theory and Related Geometry
拓扑场论及相关几何
- 批准号:
09304005 - 财政年份:1997
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Topological invariants related to field theory
与场论相关的拓扑不变量
- 批准号:
06640111 - 财政年份:1994
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Topological approaches to the structure of the virtual braid group
虚拟编织组结构的拓扑方法
- 批准号:
503744-2017 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interrelation between quantum and contact topology via braid group methods
通过编织群方法实现量子拓扑和接触拓扑之间的相互关系
- 批准号:
19K03490 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological approaches to the structure of the virtual braid group
虚拟编织组结构的拓扑方法
- 批准号:
503744-2017 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological approaches to the structure of the virtual braid group
虚拟编织组结构的拓扑方法
- 批准号:
503744-2017 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Representations of the Artin Braid Group, and Arithmetic AndAlgebraic Challenges to Riemann's Theorem
Artin Braid 群的表示以及对黎曼定理的算术和代数挑战
- 批准号:
8003253 - 财政年份:1980
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant