De Rham Theory of Loop Spaces and Quantum Topological Invariants
环空间和量子拓扑不变量的德拉姆理论
基本信息
- 批准号:12440014
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We investigated the algebraic structure of the homology of the loop spaces of configuration spaces and clarified its relation to finite type topological invariants for braids. Especially, we studied the homology of the loop spaces of configuration spaces and finite type topological invariants. We focused on the homology of the loop spaces of orbit configuration spaces associated with the action of Fuchsian groups on the complex upper half plane. We showed that the total homology of such loop space is isomorphic to the algebra of horizontal chord diagrams on the quotient surface. We introduced a structure of a Poisson algebra for the homology of the iterated loop space of the orbit configuration space based on the Browder operation.We gave a complete description of the space of conformal blocks for the conformal field theory on the Riemann sphere in terms of hypergeometric integrals. In particular, we clarified the integration cycles as the regularizable cycles in the homology of locally finite chains with coefficients in a certain local system defined over the complement a disrciminantal arrangement.Morita investigated the structure of various moduli spaces as well as their associated modular groups, such as the moduli space of Riemann surface -mapping class groups and the moduli space of graphs -outer automorphism group of free groups. Murakami gave a new point of view on a conjecture concerning the asymptotics of the Jones invariants for knots, the hyperbolic volume of the knot complement, and the geometric structure of 3-manifolds.
我们研究了配置空间环空间同调的代数结构,并阐明了它与辫子的有限型拓扑不变量的关系。特别地,我们研究了配置空间的环空间与有限类型拓扑不变量的同调。重点讨论了复上半平面上Fuchsian群作用下轨道构形空间的环空间的同调问题。我们证明了这种环空间的全同调与商曲面上的水平弦图的代数同构。基于Browder运算,给出了轨道位形空间迭代环空间同调的Poisson代数结构,并用超几何积分的方法完整地描述了黎曼球面上共形场理论的共形块空间.特别地,我们将积分圈定义为局部有限链同调中的可正则化圈,并研究了各种模空间及其相关模群的结构,如黎曼曲面映射类群的模空间和自由群的图-外自同构群的模空间。村上对一个关于纽结的Jones不变量的渐近性、纽结补的双曲体积和三维流形的几何结构的猜想提出了新的观点。
项目成果
期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
河野 俊丈: "Conformal Field Theory and Topology"American Mathematical Society. 184 (2002)
Toshitake Kono:“共形场论和拓扑”美国数学会 184 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshitake KOHNO: "Conformal field theory and topology"Translations of Mathematical Monographs, Volume 210 American Mathematical Society. 181 (2002)
Toshitake KOHNO:《共形场论和拓扑》数学专着翻译,第 210 卷美国数学会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshtiake Kohno: "Vassiliev invariants of braids and iterated integrals"Advanced Studuies in Pure Math.. 27. 157-168 (2000)
Toshtiake Kohno:“辫子的 Vassiliev 不变量和迭代积分”Advanced Studuies in Pure Math.. 27. 157-168 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshitake Kohno: "Vassiliev invariants of braids and iterated integrals"Advanced Studies in Pure Math.. 27. 157-168 (2000)
Toshitake Kohno:“辫子的 Vassiliev 不变量和迭代积分”Advanced Studies in Pure Math.. 27. 157-168 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOHNO Toshitake其他文献
KOHNO Toshitake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOHNO Toshitake', 18)}}的其他基金
Discrete geometry and creation of 3 dimensional geometric models
离散几何和 3 维几何模型的创建
- 批准号:
15K13434 - 财政年份:2015
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Visualization in geometry and construction of 3-dimensional mathematical models
几何可视化和 3 维数学模型的构建
- 批准号:
23654022 - 财政年份:2011
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Braid groups, iterated integrals and geometric structures of configuration spaces
配置空间的辫群、迭代积分和几何结构
- 批准号:
20340010 - 财政年份:2008
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of braids, hyperplane arrangements and applications to conformal field theory
辫子理论、超平面排列及其在共形场理论中的应用
- 批准号:
16340014 - 财政年份:2004
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topological Field Theory and Related Geometry
拓扑场论及相关几何
- 批准号:
09304005 - 财政年份:1997
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Topological invariants related to field theory
与场论相关的拓扑不变量
- 批准号:
06640111 - 财政年份:1994
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
MATHEMATICAL PHYSICS,TOPOLOGY AND RELATED ALGEBRAIC STRUCTURE
数学物理、拓扑及相关代数结构
- 批准号:
03640073 - 财政年份:1991
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
A Configuration-Space Interrogation Approach to the Understanding and Design of Critical Load-Bearing Structures Susceptible to Buckling
用于理解和设计易受屈曲影响的关键承载结构的配置空间询问方法
- 批准号:
1926672 - 财政年份:2019
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
- 批准号:
1839358 - 财政年份:2018
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
- 批准号:
1839370 - 财政年份:2018
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Topology of configuration space model for viewing flow lines of flexible molecules
用于观察柔性分子流线的构型空间模型拓扑
- 批准号:
17K05366 - 财政年份:2017
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MPS: BIO: Theory, Algorithms, Software, for Predicting Geometric Entropy-driven Virus Assembly, using Multiscale Configuration Space Atlasing and Combinatorial Enumeration
MPS:BIO:使用多尺度配置空间图谱和组合枚举来预测几何熵驱动的病毒组装的理论、算法、软件
- 批准号:
1122541 - 财政年份:2011
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Topology of the embedding spaces via configuration space integrals, operads and the calculus of functors
通过配置空间积分、操作数和函子微积分实现嵌入空间的拓扑
- 批准号:
23840015 - 财政年份:2011
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: A Formal Theory of Robust Numerical Computational Geometry and Its Validation on Configuration Space Construction
协作研究:鲁棒数值计算几何的形式理论及其对构型空间构造的验证
- 批准号:
0304955 - 财政年份:2003
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Collaborative Research: A Formal Theory of Robust Numerical Computation Geometry and Its Validation on Configuration Space Construction
协作研究:鲁棒数值计算几何的形式理论及其对配置空间构造的验证
- 批准号:
0306214 - 财政年份:2003
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
The relation between the configuration space and the root systems
配置空间与根系统的关系
- 批准号:
09640057 - 财政年份:1997
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)