Convergence Theory for Alexandrov Spaces
Alexandrov 空间的收敛理论
基本信息
- 批准号:06640155
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the case where the singularities of Alexandrov spaces with curvature bounded below are not so big, under convergence of spaces. we were able to construct Lipschitz homeomorphisms between spaces. In particalar, the continuity of volumes of Alexandrov spaces follows from this result. Moreover, we proved that the Hausdorff measure of the singular set of an Alexandrov space is zero, and that one can define a natural Riemannian structure on the regular set. We also proved that the isometry group of an Alexandrov space with curvature bounded below is a lie group, which has some applications to Riemannian geometry. On the other hand, we extended the notion of the Gromov invariant to Alexandrov spaces, and clarified the relation between the curvature, volume and the Gromov invariant. First, making use of the Alexander-Spanier cohomology theory, we proved the existence of the fundamental class [X] of X, and defined the Gromov invariant of X.Next, we proved that the mass of the fundamental class [X] coincides with the volume of X.In the proof of this face, we used geometric measure theory to approximate a chain representing [X] in the mass topology by a Lipschitz chain with nice properties, and developed a cancellation technique which might be considered as a replacement of Stokes' theorem. And we proved that the Gromov invariant of a negatively curved Alexandrov space can be estimated below interms of the upper bound of curvature and the volume. In the case of Alexandrov surfaces, we obtained a sharp estimate for the Gromov invariant with the type of singularities. For Alexandrov spaces with curvature bounded below, we bave an estimate for the Gromov invariant from above in terms of the volume and the lower bound of curvature. Thus it turned out that the appearanceo of singularities of such a space does not affect the Gromov invariant so much. This shows the big difference between the two cases, spaces curved above and spaces curved below.
在曲率下有界的Alexandrov空间的奇点不大的情况下,在空间收敛下。我们能够在空间之间构造Lipschitz同胚。特别地,亚历山德罗夫空间的体积的连续性从这个结果得出。此外,我们证明了亚历山德罗夫空间的奇异集的Hausdorff测度为零,并且可以在正则集上定义一个自然的黎曼结构。我们还证明了曲率有界的Alexandrov空间的等距群是李群,这在黎曼几何中有一些应用。另一方面,我们将Gromov不变量的概念推广到Alexandrov空间,并阐明了曲率、体积与Gromov不变量之间的关系。首先,利用Alexander-Spanier上同调理论证明了X的基本类[X]的存在性,并定义了X的Gromov不变量。其次,证明了基本类[X]的质量与X的体积一致。在这方面的证明中,我们利用几何测度理论将质量拓扑中的链表示[X]近似为具有良好性质的Lipschitz链,并发展了一种可以被认为是斯托克斯定理的替代的抵消技术。证明了负曲率Alexandrov空间的Gromov不变量可以在曲率上界和体积下估计。在Alexandrov曲面的情况下,我们得到了一个尖锐的估计的Gromov不变量的类型的奇点。对于曲率下有界的Alexandrov空间,我们给出了Gromov不变量的体积和曲率下界的估计。因此,它证明了这样一个空间的奇点的出现并不影响格罗莫夫不变量这么多。这显示了两种情况之间的巨大差异,上面弯曲的空间和下面弯曲的空间。
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Yamaguchi: "A convergence theorem in the geometry of Alexandrov spaces" Collection SMF Seminaires et Congres. (to appear).
T.Yamaguchi:“Alexandrov 空间几何中的收敛定理”Collection SMF Seminaires et Congres。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Shioya: "Behavior of distant maximal geodesics in finitely connected Complete2-dimensional Riemannian manifolds" Memoris of the American Mathematical Society. 108. 1-73 (1994)
T.Shioya:“有限连通的完整二维黎曼流形中的远距离最大测地线的行为”美国数学会备忘录。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Tanaka and T.Tuiisita: "Hypersets and dynamics of Knowledge" Hokkaido Math.J.24to appear. (1995)
S.Tanaka 和 T.Tuiisita:“知识的超集和动态”北海道 Math.J.24 出现。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Tanaka: "Hypersets and dynamics of know ledge" Hokkaido Mathematical Journal. 24. 215-230 (1995)
S. Tanaka:“知识的超集和动态”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Cho: "Intersection Theory, for twisted Chomelogies and Twisted Rimanns Period Relations I." Nagoya Math, J.139. 67-86 (1995)
K.Cho:“交叉理论,用于扭曲的 Chomelogies 和扭曲的 Rimanns 周期关系 I。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAGUCHI Takao其他文献
YAMAGUCHI Takao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAGUCHI Takao', 18)}}的其他基金
Design and synthesis of membrane-permeable oligonucleotides and their application to therapeutic antisense oligonucleotides
膜渗透性寡核苷酸的设计和合成及其在治疗性反义寡核苷酸中的应用
- 批准号:
20K05748 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of periodontal ligament homeostasis of LRRC32
LRRC32牙周膜稳态的功能分析
- 批准号:
24792160 - 财政年份:2012
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
New development of inverse spectral problems for singular spaces
奇异空间反谱问题的新进展
- 批准号:
24654010 - 财政年份:2012
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of mechanical arms in nursing care equipments for caregivers and care recievers using dynamic properties of living bodies
利用生物体的动态特性,开发用于护理人员和被护理人员的护理设备中的机械臂
- 批准号:
23560250 - 财政年份:2011
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of convergence and collapsing phenomena by methods of geometric analysis
用几何分析方法研究收敛和塌缩现象
- 批准号:
21340013 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Convergence・collapsing theory of manifolds, Ricci flows and the geometry and analysis of singular spaces
流形的收敛·塌陷理论、利玛窦流以及奇异空间的几何与分析
- 批准号:
17204003 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Theory of collapsing Riemannian manifolds and geometry of Alexandrov spaces
坍缩黎曼流形理论和亚历山德罗夫空间几何
- 批准号:
13440024 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Membrane design for removal of environmental pollutant from waste water by plasma graft
等离子体接枝去除废水中环境污染物的膜设计
- 批准号:
11650794 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collapsing Theory of 4-manifolds and the geometry of Alexandrov Spaces
4流形的塌缩理论和Alexandrov空间的几何
- 批准号:
10440023 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Studies of the botanical specimens collected by vor. Siebold
对 vor 收集的植物标本的研究。
- 批准号:
10041173 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B).














{{item.name}}会员




