Theory of collapsing Riemannian manifolds and geometry of Alexandrov spaces

坍缩黎曼流形理论和亚历山德罗夫空间几何

基本信息

项目摘要

1.We have completed the study of collapsing 4-manifolds whose sectional curvature and diameter are uniformly bounded from below and above respectively, and established the geometry of 3-dimensional and 4-dimensional complete open spaces of nonnegative curvature (Yamaguchi).2.We have proved that a 3-manifold with a lower curvature bound having a small volume is a graph manifold (Yamaguchi and Shioya).3.We have determined the Gromov-Hausdorff convergence of surfaces with uniformly bounded total absolute curvature, and developed geometry of limit pearl spaces in detail such as singularities, homotopy types, number of pearls (Yamaguchi and Hori).4.We have determined local geometric properties of a neighborhood of a singular point in an two-dimensional singular spaces with curvature bounded above proving that it is a gluing of several Lipschitz disks (Yamaguchi, Nagano and Shioya).5.We have defined the notion of singular spaces with Ricci curvature bounded below, and introduced energy forms from such spaces to general metric spaces. We have proved the Poincare inequality and a compactness theorem using it (Kuwae and Shioya).6.We have considered discrete approximations of spaces like Riemannian manifolds or Alexandrov spaces by graphs called nets, and proved that the convergence of Laplacians of nets to that of the space (Otsu). Using the idea of net-approximation above, we have studied the asymptotic behavior of heat operators on manifolds and obtained a central limit theorem for heat operator on nilpotent covering manifolds.
1.完成了截面曲率和直径分别自下有界和上有界的4-流形的折叠研究,建立了3维和4维完备的非负曲率开空间(Yamaguchi)的几何;2.证明了具有小曲率下界的3-流形是图流形(Yamaguchi和Shioya);3.确定了全曲率一致有界曲面的Gromov-Hausdorff收敛,并发展了极限珍珠空间的几何,如奇点、同伦型、4.我们确定了曲率在上面有界的二维奇异空间中奇点邻域的局部几何性质,证明了它是若干Lipschitz圆盘(Yamaguchi,Nagano和Shioya)的粘合.5.我们定义了Ricci曲率在下面有界的奇异空间的概念,并将这种空间的能量形式引入到一般的度量空间.我们用它证明了Poincare不等式和一个紧性定理(科威特和Shioya)。6.我们考虑了黎曼流形或Alexandrov空间的离散逼近,证明了网的拉普拉斯收敛到空间的拉普拉斯收敛(Otsu)。利用上述网逼近的思想,我们研究了流形上热算子的渐近行为,得到了幂零覆盖流形上热算子的中心极限定理。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
山口孝男: "Alexandrov空間の位相的安定性"数学メモアール. (発表予定).
Takao Yamaguchi:“亚历山德罗夫空间的拓扑稳定性”数学回忆录(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
山口孝男: "4次元Riemann多様体の崩壊"数学. 52・2. 172-186 (2000)
Takao Yamaguchi:“4 维黎曼流形的塌陷” 数学 52・2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Isolation Theorems of the Bochner Curvature Type Tensors
  • DOI:
    10.3836/tjm/1244208487
  • 发表时间:
    2004-06
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    M. Itoh;Daisuke Kobayashi
  • 通讯作者:
    M. Itoh;Daisuke Kobayashi
Introduction to Alexandrov spaces
亚历山德罗夫空间简介
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Sioya;T.Yamaguchi;山口孝男;M.Itoh;大津幸男;T.Yamaguchi;M.Itoh;Y.Otsu
  • 通讯作者:
    Y.Otsu
Sasakian manifolds, Hodge decomposition and Milnor algebras
Sasakian 流形、Hodge 分解和 Milnor 代数
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Itoh;D.Kobayashi;M.Itoh
  • 通讯作者:
    M.Itoh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAGUCHI Takao其他文献

YAMAGUCHI Takao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAGUCHI Takao', 18)}}的其他基金

Design and synthesis of membrane-permeable oligonucleotides and their application to therapeutic antisense oligonucleotides
膜渗透性寡核苷酸的设计和合成及其在治疗性反义寡核苷酸中的应用
  • 批准号:
    20K05748
  • 财政年份:
    2020
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional analysis of periodontal ligament homeostasis of LRRC32
LRRC32牙周膜稳态的功能分析
  • 批准号:
    24792160
  • 财政年份:
    2012
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New development of inverse spectral problems for singular spaces
奇异空间反谱问题的新进展
  • 批准号:
    24654010
  • 财政年份:
    2012
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of mechanical arms in nursing care equipments for caregivers and care recievers using dynamic properties of living bodies
利用生物体的动态特性,开发用于护理人员和被护理人员的护理设备中的机械臂
  • 批准号:
    23560250
  • 财政年份:
    2011
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of convergence and collapsing phenomena by methods of geometric analysis
用几何分析方法研究收敛和塌缩现象
  • 批准号:
    21340013
  • 财政年份:
    2009
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Convergence・collapsing theory of manifolds, Ricci flows and the geometry and analysis of singular spaces
流形的收敛·塌陷理论、利玛窦流以及奇异空间的几何与分析
  • 批准号:
    17204003
  • 财政年份:
    2005
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Membrane design for removal of environmental pollutant from waste water by plasma graft
等离子体接枝去除废水中环境污染物的膜设计
  • 批准号:
    11650794
  • 财政年份:
    1999
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collapsing Theory of 4-manifolds and the geometry of Alexandrov Spaces
4流形的塌缩理论和Alexandrov空间的几何
  • 批准号:
    10440023
  • 财政年份:
    1998
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Studies of the botanical specimens collected by vor. Siebold
对 vor 收集的植物标本的研究。
  • 批准号:
    10041173
  • 财政年份:
    1998
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Studies of the botanical specimens collected by von Siebold
对冯·西博尔德收集的植物标本的研究
  • 批准号:
    08041153
  • 财政年份:
    1996
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for international Scientific Research

相似海外基金

Geometry and collapsing theory of Alexandrov spaces
亚历山德罗夫空间的几何和塌陷理论
  • 批准号:
    22KJ2099
  • 财政年份:
    2023
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
YAP and TAZ: novel regulators of collapsing glomerulopathy
YAP 和 TAZ:塌陷性肾小球病的新型调节因子
  • 批准号:
    478296
  • 财政年份:
    2023
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Operating Grants
YAP and TAZ: novel regulators of collapsing glomerulopathy
YAP 和 TAZ:塌陷性肾小球病的新型调节因子
  • 批准号:
    477295
  • 财政年份:
    2022
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Operating Grants
Detection of collapsing peripheral bulge in Antarctica using satellite gravity data and GIA modeling
使用卫星重力数据和 GIA 建模检测南极洲塌陷的外围隆起
  • 批准号:
    20K22372
  • 财政年份:
    2020
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collapsing bubbles in complex geometries
复杂几何形状中的气泡破裂
  • 批准号:
    2281992
  • 财政年份:
    2019
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Studentship
Elucidation of collapsing and re-stabilizing mechanisms in microbial ecosystems
阐明微生物生态系统的崩溃和重新稳定机制
  • 批准号:
    19K22927
  • 财政年份:
    2019
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Sedimentation Waves in Collapsing Volcanic Plumes
崩塌火山羽流中的沉积波
  • 批准号:
    504918-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Globular Cluster Formation in Hierarchically Collapsing Clouds as an Origin for Multiple Stellar Populations
合作研究:分层塌缩云中球状星团的形成作为多个恒星族的起源
  • 批准号:
    1814772
  • 财政年份:
    2018
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Globular Cluster Formation in Hierarchically Collapsing Clouds as an Origin for Multiple Stellar Populations
合作研究:分层塌缩云中球状星团的形成作为多个恒星族的起源
  • 批准号:
    1815461
  • 财政年份:
    2018
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Standard Grant
Investigation of inner mitochondrial collapsing in response to acute cardiac overstretch.
研究急性心脏过度伸展引起的线粒体内塌陷。
  • 批准号:
    18K19435
  • 财政年份:
    2018
  • 资助金额:
    $ 6.14万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了