Direct numerical simulation and macroscopic modeling of heat and fluid flow in porous media
多孔介质中热流和流体流动的直接数值模拟和宏观建模
基本信息
- 批准号:06650241
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two- and three-dimensional numerical calculations have been conducted to simulate the viscous and porous inertia effects on the pressure drop in Newtonian and non-Newtonian fluid flows through porous media. Various periodic arrangements of square and circular rods are proposed as two-dimensional models of microscopic porous structure, whereas a collection of cubes placed in a region of infinite extent is proposed as its three-dimensional model. A full set of two- and three-dimensional momentum equations are treated along with the continuity equation at a pore scale, so as to simulate a flow through an infinite number of obstacles arranged in a regular pattern. The microscopic numerical results, thus obtained, are processed to extract the macroscopic relationship between the pressure gradient-mass flow rate. It has been found that the modified permeability determined by reading the intercept in the dimensionless pressure gradient versus Reynolds number plot closely follows Christopher and Middleman's formula based on a hydraulic radius concept. Upon comparing the results based on the two- and three-dimensional models, it has been found that only the three-dimensional model can capture the porous inertia effects on the pressure drop, correctly. Thermal dispersion in porous media is also investigated using a two-dimensional periodic array. The resulting correlation for high Peclet number range agrees well with available experimental data.
通过二维和三维数值计算,模拟了粘性和孔隙惯性对牛顿流体和非牛顿流体在多孔介质中流动压降的影响。提出了各种周期性安排的方形和圆形杆的微观多孔结构的二维模型,而一个集合的立方体放置在一个区域的无限范围内提出了其三维模型。一套完整的二维和三维的动量方程被视为沿着与连续性方程在孔隙尺度,以模拟通过无限数量的障碍物排列在一个规则的模式。微观数值结果,从而获得,处理,以提取的压力梯度-质量流量之间的宏观关系。已经发现,通过阅读无因次压力梯度与雷诺数图中的截距确定的修改的渗透率紧密地遵循基于水力半径概念的Christopher和Middleman公式。在比较基于二维和三维模型的结果时,已经发现,只有三维模型可以正确地捕获多孔惯性对压降的影响。多孔介质中的热色散也使用一个二维的周期性阵列进行了研究。高Peclet数范围内得到的相关性与现有的实验数据吻合良好。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
井上昌考: "多孔質体内の非ニュートン流体の熱流動" 日本機械学会論文集B、編. 62-595. 1124-1128 (1996)
Masanori Inoue:“多孔体中非牛顿流体的热流”,日本机械工程师学会会刊 B,编辑 1124-1128(1996 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Inoue and A.Nakayama: "Non-Newtonian fluid flow and heat transfer in a porous medium (lst Report, Two-dimensional numerical modeling of fluid flow" Transaction of JSME,Ser.C. Vol.62-595. 1124-1128 (1996)
M.Inoue 和 A.Nakayama:“多孔介质中的非牛顿流体流动和传热(第一份报告,流体流动的二维数值模拟”Transaction of JSME,Ser.C. Vol.62-595。1124-
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakayama, A.: "Numerical Modelling of Fluid Flow in Prous Media" Proc. Int. Joint comp. Thermo-Fluids Engineering on the Front-Most Line. 120-127 (1995)
Nakayama, A.:“Prous 介质中流体流动的数值模拟”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Nakayama, F.Kuwahara, Y.Kawamura and H.Koyama: "Three-dimensional numerical simulation of flow through a microscopic porous structure" Proc.ASME/JSME Thermal Engineering Conference. Vol.3. 313-318 (1995)
A.Nakayama、F.Kuwahara、Y.Kawamura 和 H.Koyama:“通过微观多孔结构流动的三维数值模拟”Proc.ASME/JSME 热工程会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井上昌彦: "多孔質体内の非ニュートレ流体の熱流動" 日本機械学全論文集B編. 62-595. 1124-1128 (1996)
Masahiko Inoue:“多孔体中非核流体的热流动”,《日本机械工程学报》,第 B. 62-595 卷(1996 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAYAMA Akira其他文献
NAKAYAMA Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAYAMA Akira', 18)}}的其他基金
A study on a qualitative and objective assessment tool for foreign language activities: Focusing on Japanese elementary school students with special educational needs
外语活动定性客观评估工具研究——以日本特殊教育需求小学生为中心
- 批准号:
26370729 - 财政年份:2014
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Foreign Language Activities in Special Needs Education: fundamental issues on some focal points and ways of supporting teachers
特殊教育中的外语活动:一些重点和支持教师的方式的基本问题
- 批准号:
23520749 - 财政年份:2011
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical formulation of bioheat transfer based on the volume averaging theory, and its development and verification of the multi-scale analytical model
基于体积平均理论的生物传热数学公式及其多尺度分析模型的建立和验证
- 批准号:
22360088 - 财政年份:2010
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of dynamical simulation method for quantum liquids and its extension to identical particle systems
量子液体动力学模拟方法的发展及其对相同粒子系统的扩展
- 批准号:
21750001 - 财政年份:2009
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A fundamental study on Non-linguistic factors of English learners in Japanese elementary schools
日本小学英语学习者非语言因素的基础研究
- 批准号:
20720151 - 财政年份:2008
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Theoretical modeling and experimental verification of thermal dispersion for its applications in porous media and exploration of bio-transfer mechanism
热分散在多孔介质中的应用的理论建模和实验验证以及生物传递机制的探索
- 批准号:
19360099 - 财政年份:2007
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Micro- and macroscopic investigation and mathematical modeling of heat transfer within a porous medium layer
多孔介质层内传热的微观和宏观研究及数学建模
- 批准号:
12450085 - 财政年份:2000
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical prediction of underground water contamination based on a multiphase mixture model
基于多相混合模型的地下水污染数值预测
- 批准号:
10650207 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Flow and heat transfer mechanism in the vicinity of the interface between the porous and fluid layers
多孔层和流体层界面附近的流动和传热机制
- 批准号:
01550172 - 财政年份:1989
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Assessment of climate change impact on permafrost using numerical model
使用数值模型评估气候变化对永久冻土的影响
- 批准号:
22KF0425 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of a numerical model for multidimensional and quantitative evaluation of heat tolerance of rice cultivars in grain filling
水稻品种灌浆耐热性多维定量评价数值模型的建立
- 批准号:
23K13940 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
- 批准号:
RGPIN-2020-06629 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of the mechanism of particle suspension in debris flows focusing on flow stratification and its implementation in a numerical model
以流动分层为重点的泥石流中颗粒悬浮机制的阐明及其在数值模型中的实现
- 批准号:
22K14452 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on the mechanism of flood inundation disasters involving sediment and driftwood and the development of an integrated numerical model
泥沙、浮木洪涝灾害机理研究及综合数值模型开发
- 批准号:
22H01596 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Transport-Rate-Limited Numerical Model for Simulating Cell Growth and Biodegradation Rates in Porous Soil and Rock
模拟多孔土壤和岩石中细胞生长和生物降解速率的传输速率限制数值模型
- 批准号:
RGPIN-2020-03866 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A comprehensive numerical model for the electrohydrodynamic flow generated by gas discharges and its application to simulate, design and optimize practical devices and processes
气体放电产生的电流体动力流的综合数值模型及其在模拟、设计和优化实际装置和过程中的应用
- 批准号:
RGPIN-2022-04480 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Development of a numerical model to predict the quantum dot properties of flame-made carbon nanoparticles
开发数值模型来预测火焰制造的碳纳米粒子的量子点特性
- 批准号:
558007-2021 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Postdoctoral Fellowships
Development of subject specific numerical model of the spine
脊柱特定学科数值模型的开发
- 批准号:
573761-2022 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
University Undergraduate Student Research Awards
Prediction of the Coupled Hygrothermal and Movement Behaviour of Mass Timber Buildings - A Laboratory to Construction to Post-Occupancy Case-Study Based Numerical Model
体量木结构建筑湿热与运动耦合行为的预测——基于使用后案例研究的数值模型构建实验室
- 批准号:
558275-2020 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Alliance Grants