Explainable fault diagnosis for smart cities

智慧城市的可解释故障诊断

基本信息

项目摘要

Smart cities are based on wireless sensor networks. Faults and miscalibrations in wireless sensor networks, if undetected, may degrade the quality of "big data" collected for autonomous decision making, which is imperative in smart city applications. The need for reliable fault diagnosis is particularly prominent in smart infrastructure, which is an essential component of smart cities. Smart infrastructure is equipped with wireless sensor networks that autonomously collect, analyze, and communicate structural data, referred to as "smart monitoring". Although fault diagnosis concepts are not new in related research areas, these concepts have not kept pace with the ongoing "smartification" and cannot be adapted to smart infrastructure. This project aims at developing a fault diagnosis framework for wireless sensor networks deployed in smart infrastructure. Unlike analytical redundancy approaches that are usually used to achieve fault tolerance in distributed systems, this project proposes a new methodology based on artificial intelligence (AI). The novelty of the AI-based framework is a strong mathematical formulation of a deep learning concept proposed for distributedly embedding convolutional neural networks in wireless sensor networks. In addition to the decentralization itself, the limited energy and computing resources of wireless sensor nodes are also considered. Moreover, a generally valid classification-based mathematical formulation of the fault diagnosis problem is introduced. One of the key advantages of the classification-based fault diagnosis problem formulation is the absence of analytical redundancy requirements by shifting the fault diagnosis problem to the mathematical features inherent in sensor data. Propelled by the lack of trust in AI algorithms that are black-box by nature, the AI-based fault diagnosis framework is complemented by an explanation interface based on the classification-based mathematical formulation, thus adding transparency to the AI-based fault diagnosis framework. Finally, the fault diagnosis framework is verified and validated by means of a dual verification and validation strategy that builds upon the results of a DFG research training group at Bauhaus University Weimar, using experimental laboratory tests as well as structural data recorded from a real-world railway bridge in operation. Through the AI algorithms of the fault diagnosis framework, being explainable and transparent to engineers, it is expected that smart infrastructure will be enabled to reliably self-detect sensor faults and sensor miscalibrations – without the need for multiple redundant sensors, first-principle models (such as finite element models), or a priori knowledge on the physical principles of smart infrastructure. As a result, the dependability and the accuracy of autonomous decision making in smart infrastructure will be enhanced, thus facilitating reduced maintenance and operation costs in smart cities.
智慧城市是基于无线传感器网络的。无线传感器网络中的故障和误校准如果未被检测到,可能会降低为自主决策收集的“大数据”的质量,这在智慧城市应用中是必不可少的。可靠的故障诊断需求在智能基础设施中尤为突出,这是智能城市的重要组成部分。智能基础设施配备了无线传感器网络,可以自主收集,分析和传输结构数据,称为“智能监控”。虽然故障诊断概念在相关研究领域并不新鲜,但这些概念没有跟上正在进行的“智能化”的步伐,无法适应智能基础设施。本计画旨在发展一个可应用于智慧型基础设施的无线感测网路故障诊断架构。与通常用于在分布式系统中实现容错的分析冗余方法不同,该项目提出了一种基于人工智能(AI)的新方法。基于AI的框架的新奇是深度学习概念的强大数学公式,该概念被提出用于在无线传感器网络中分布式嵌入卷积神经网络。除了分散性本身,无线传感器节点的能量和计算资源的有限性也被考虑。此外,一般有效的分类为基础的故障诊断问题的数学公式。基于分类的故障诊断问题公式化的关键优点之一是通过将故障诊断问题转移到传感器数据中固有的数学特征来消除分析冗余要求。由于对本质上是黑箱的AI算法缺乏信任,基于AI的故障诊断框架由基于分类的数学公式的解释接口补充,从而增加了基于AI的故障诊断框架的透明度。最后,故障诊断框架进行了验证和确认的双重验证和确认策略,建立在一个DFG的研究培训小组在包豪斯大学魏玛的结果,使用实验室测试以及结构数据记录从现实世界中的铁路桥梁运行。通过故障诊断框架的人工智能算法,对工程师来说是可解释和透明的,预计智能基础设施将能够可靠地自我检测传感器故障和传感器失调-而不需要多个冗余传感器,第一原理模型(如有限元模型)或关于智能基础设施物理原理的先验知识。因此,智能基础设施中自主决策的可靠性和准确性将得到提高,从而有助于降低智能城市的维护和运营成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Kay Smarsly其他文献

Professor Dr.-Ing. Kay Smarsly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Kay Smarsly', 18)}}的其他基金

BIM-based information modeling for semantic description of intelligent structural health monitoring systems
基于BIM的智能结构健康监测系统语义描述信息建模
  • 批准号:
    409501498
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Metaization concept for structural health monitoring
结构健康监测的元化概念
  • 批准号:
    327304938
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Advanced Structural Health Monitoring based on Collective Intelligence
基于集体智慧的先进结构健康监测
  • 批准号:
    158447537
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Quality assurance of digital twins based on mathematical abstraction and tangle-based blockchain architectures
基于数学抽象和基于缠结的区块链架构的数字孪生的质量保证
  • 批准号:
    500355272
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Resilient infrastructure based on cognitive buildings
基于认知建筑的弹性基础设施
  • 批准号:
    454010544
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robot-based inspection of civil infrastructure using frame semantics and linguistic metamodels
使用框架语义和语言元模型对民用基础设施进行机器人检查
  • 批准号:
    531513904
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Digitalization of earth-based construction processes
地面施工过程的数字化
  • 批准号:
    533200586
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划
制冷系统故障诊断关键问题的定量研究
  • 批准号:
    50876059
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Towards resiliency through health monitoring, diagnosis, prognosis, and fault tolerance in complex and cyber-physical systems with applications to electrified and connected vehicles.
通过复杂网络物理系统的健康监测、诊断、预测和容错,并应用于电气化和互联车辆,实现弹性。
  • 批准号:
    RGPIN-2018-04002
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Online Fault Diagnosis, Prognosis, and Health Monitoring of Small Satellites
小卫星在线故障诊断、预测和健康监测
  • 批准号:
    RGPIN-2020-05513
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fault Characterization and Diagnosis at the Distributed Generation Interfacing Inverters
分布式发电接口逆变器的故障表征和诊断
  • 批准号:
    574909-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
ERI: Harnessing Probabilistic Deep Learning Method Integrated with Tailored Features for Enhanced Real-Time Machinery Fault Diagnosis and Prognosis
ERI:利用概率深度学习方法与定制特征相结合,增强实时机械故障诊断和预测
  • 批准号:
    2138522
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Cooperative Cyber Attack Protection, Fault Diagnosis, and Recovery Control of Autonomous Networked Unmanned Vehicles and Multi-Agent Cyber-Physical Systems (CPS)
自主网络化无人驾驶车辆和多智能体网络物理系统(CPS)的协同网络攻击防护、故障诊断和恢复控制
  • 批准号:
    RGPIN-2019-06996
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    RGPIN-2020-06299
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data
大数据时代的鲁棒系统建模、过程监控和故障诊断
  • 批准号:
    RGPIN-2020-04138
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development on Fault Diagnosis and Fault-Tolerant Cooperative Control Techniques with Applications to Safety-Critical Systems
故障诊断和容错协同控制技术的发展及其在安全关键系统中的应用
  • 批准号:
    RGPIN-2017-06680
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development on Fault Diagnosis and Fault-Tolerant Cooperative Control Techniques with Applications to Safety-Critical Systems
故障诊断和容错协同控制技术的发展及其在安全关键系统中的应用
  • 批准号:
    RGPIN-2017-06680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了