Atmospheric photochemistry on the molecular level using nonlinear optical spectroscopy

使用非线性光谱法在分子水平上进行大气光化学

基本信息

项目摘要

The air / water interface is omnipresent in the environment and usually exposed to the atmosphere and solar light. Organic coatings on the water surface may enhance the concentration of natural photosensitizers at the air / water interface. The resulting increase in the rate of photochemical interactions at such an interface impacts the composition and concentration of volatile organic compounds (VOC) emitted to the atmosphere. Such interactions can take place at the surfaces of cloud droplets, lakes, rivers, seas and oceans (e.g. sea surface microlayer). Despite numerous investigations to elucidate the emission and uptake of gases and aerosols in the atmosphere, there is still a fundamental lack in our knowledge about the molecular composition and structure of surface entities and their role in the interaction. Therefore, molecular-level understanding of gas-liquid interactions under atmospheric conditions is of fundamental importance to the prediction of aerosol formation and aging, cloud occurrence and properties, and ultimately changes in the Earth’s climate system. The overall goal of the proposed work is to explore the photochemistry at air / water interface, using nonlinear optical (NLO) spectroscopy, and to pay attention to organic substances in the hydrosphere and atmosphere. The distinguished capability of NLO spectroscopy to address elementary processes of atmospheric interactions has been demonstrated in my previous work. The experimental plan proposed here is mainly based on probing organic layers at air / water interface under typical atmospheric conditions (e.g. temperature and solar irradiation). I will combine sum-frequency generation and second-harmonic generation, as surface spectroscopic NLO techniques, with bulk techniques (e.g. absorption and mass spectrometry) to study the interfacial layer of organic compounds adsorbed at air / water interface while exposed to air and actinic radiation at different temperatures. A temperature controlled hybrid multiphase environmental chamber will be designed and manufactured for this purpose. Nonanoic acid as a model for natural surfactants will be examined in the presence of photosensitizers (e.g. 4-benzoylbenzoic acid as a model for natural photosensitizers). Next, dimethyl sulfoxide, which is the most abundant organic sulfur compound in the oceans, will be examined. This study will lay the foundations for a more deterministic description of the factors influencing the emission of VOCs and the nucleation and growth of SOA, which is a major unsolved and pressing problem in our understanding of the generation of condensed phase radicals that are important for organic aerosol and trace gas budgets in the atmosphere. It will have a significant impact on our understanding of atmospheric processes and, hence, climate system.
空气/水界面在环境中无处不在,通常暴露在大气和太阳光下。水表面上的有机涂层可以提高空气/水界面处的天然光敏剂的浓度。在这样的界面上,光化学相互作用的速率增加,影响了排放到大气中的挥发性有机化合物(VOC)的组成和浓度。这种相互作用可以发生在云滴、湖泊、河流、海洋和大洋的表面(例如海面微层)。尽管有许多研究来阐明大气中气体和气溶胶的排放和吸收,但我们对表面实体的分子组成和结构及其在相互作用中的作用仍然缺乏基本知识。因此,在分子水平上了解大气条件下的气液相互作用对于预测气溶胶的形成和老化、云的发生和性质以及最终预测地球气候系统的变化具有根本的重要性。拟议的工作的总体目标是探索在空气/水界面的光化学,使用非线性光学(NLO)光谱,并关注水圈和大气中的有机物质。在我以前的工作中,已经证明了非线性光学光谱学解决大气相互作用的基本过程的杰出能力。本文提出的实验方案主要是在典型大气条件下(如温度和太阳辐射)探测空气/水界面的有机层。我将结合联合收割机和频产生和二次谐波产生,作为表面光谱非线性光学技术,与体技术(如吸收和质谱),研究吸附在空气/水界面的有机化合物的界面层,而暴露于空气和光化辐射在不同的温度。为此目的,将设计和制造一个温度控制的混合多相环境室。壬酸作为天然表面活性剂的模型将在光敏剂的存在下进行检查(例如,4-苯甲酰基苯甲酸作为天然光敏剂的模型)。接下来,将研究海洋中最丰富的有机硫化合物二甲基亚砜。这项研究将奠定基础,一个更确定性的描述的影响因素的挥发性有机化合物的排放和SOA的成核和生长,这是一个重大的未解决的和紧迫的问题,在我们的理解凝聚相自由基的产生是重要的有机气溶胶和微量气体在大气中的预算。它将对我们理解大气过程以及气候系统产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Ahmed Abdelmonem, Ph.D.其他文献

Dr. Ahmed Abdelmonem, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Ahmed Abdelmonem, Ph.D.', 18)}}的其他基金

Elementary processes of heterogeneous ice nucleation observed by nonlinear optical spectroscopy: The role of hydroxyl groups on the surfaces of mineral aerosol particles
非线性光谱观察异质冰成核的基本过程:矿物气溶胶颗粒表面羟基的作用
  • 批准号:
    261509307
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

New Proximity Labeling Tools for Studying 3D Chromatin Structure and Function
用于研究 3D 染色质结构和功能的新型邻近标记工具
  • 批准号:
    10607285
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Fractionated photoimmunotherapy to harness low-dose immunostimulation in ovarian cancer
分段光免疫疗法利用低剂量免疫刺激治疗卵巢癌
  • 批准号:
    10662778
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A comprehensive platform for low-cost screening and image-guided photodynamic therapy (PDT) of pre-malignant and malignant oral lesions in low resource settings
一个综合平台,用于在资源匮乏的环境中对癌前和恶性口腔病变进行低成本筛查和图像引导光动力治疗 (PDT)
  • 批准号:
    10648426
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of excited-state bond homolysis as a key step for Ni catalysis
激发态键均裂的发展作为镍催化的关键步骤
  • 批准号:
    10753322
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Chemical Biology of the Visual Pigments
视觉颜料的化学生物学
  • 批准号:
    10566896
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAS: Toward Molecular Control of Cage Escape Yields in Bimolecular Photochemistry
CAS:双分子光化学中笼逃逸率的分子控制
  • 批准号:
    2247589
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10481027
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Liquid Helium Recovery System to Improve Shared Chemistry Instrumentation Core
液氦回收系统可改进共享化学仪器核心
  • 批准号:
    10533685
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Free radical strategies for bioactive molecule synthesis-Diversity Supplement
生物活性分子合成的自由基策略-多样性补充
  • 批准号:
    10671888
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
SYNTHETIC PHOTOCHEMISTRY
合成光化学
  • 批准号:
    10543475
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了