Fundamental and divisor class group: finiteness and interplay
基本和除数类群:有限性和相互作用
基本信息
- 批准号:452847893
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Position
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is the investigation of two invariants of algebraic varieties. These invariants are the fundamental and the divisor class group. They will be investigated for two different algebro-geometric objects X: weakly Fano pairs and Kawamata log-terminal singularities. It is already known that these objects have finitely generated divisor class group and Cox ring. We could also prove that an iteration of the Cox ring construction is finite for such X. This construction will play a central role in order to link both invariants.In recent work, we proved finiteness of the fundamental group of the smooth loci of the objects in consideration, in particular confirming a conjecture of Kollár.Starting from these findings and the resulting 'algebraicity' of the constructions, the aim of the present project is to link both invariants.The first part of the project provides the necessary groundwork. In particular, we aim to generalize the concept of Cox rings and consequences to the local and the orbifold setting. This will shed light also on local finiteness of Cox sheaves. This preliminary part will provide us with a unified setting for our investigations.In the second part, our objective is to relate fundamental and divisor class group with each other. The goal is to construct a G-(quasi-)torsor Z over X, such that Z is factorial and the preimage of the regular locus of X is simply connected. Moreover, the fiber G shall comprise both the fundamental and the divisor class group of X.For varieties with a one-codimensional torus action, we aim to explicitly construct this quasi-torsor, while in general, we expect to find bounds on both the number of iteration steps and the dimension of the fiber G.In the third and last part of the project, we aim to generalize our results to higher homotopy and Chow groups. In particular, we expect a direct relation between the infinite part of the divisor class group and the second homotopy group.
该项目的目的是调查两个不变量的代数簇。这些不变量是基本的和除数类群。他们将研究两个不同的代数几何对象X:弱Fano对和Kawamata对数终端奇点。我们已经知道这些对象都有一个生成的除子群和考克斯环。我们还可以证明,对于这样的X,考克斯环构造的迭代是有限的。这个结构将发挥核心作用,以连接两个不变量。在最近的工作中,我们证明了有限的基本组的光滑轨迹的对象考虑,特别是证实了一个猜想的Kollár。从这些发现和由此产生的“代数性”的建设,本项目的目的是连接两个不变量。特别是,我们的目标是推广的概念,考克斯环和后果的本地和orbifold设置。这也将阐明局部有限性的考克斯层。第一部分将为我们的研究提供一个统一的背景,第二部分的目标是将基本类群和除数类群联系起来。目标是在X上构造一个G-(拟)扭子Z,使得Z是阶乘的,且X的正则轨迹的原像是单连通的。此外,纤维G应包括基本和除数类群的X。对于品种与一个余维环面行动,我们的目标是明确地构造这个拟torsor,而在一般情况下,我们希望找到的迭代步骤的数量和尺寸的纤维G的界限。在第三和最后一部分的项目,我们的目标是推广我们的结果,以更高的同伦和Chow群。特别地,我们期望除数类群的无限部分和第二同伦群之间有直接的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Lukas Braun其他文献
Dr. Lukas Braun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
The dynamical interpretation of Higgs bundles on the theta-divisor.
希格斯丛在 theta-divisor 上的动力学解释。
- 批准号:
543312-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
non-square free integers and some developments from a new divisor problem
非平方自由整数和新除数问题的一些发展
- 批准号:
15K17512 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Explicit Formulas for Divisor Arithmetic on Genus 3 Hyperelliptic Curves
属 3 超椭圆曲线除数算术的显式公式
- 批准号:
434890-2012 - 财政年份:2012
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Localization of Ricci form and the existence of an anti-canonical divisor on asymptotically Chow stable Fano manifolds
Ricci形式的局域化和渐进Chow稳定Fano流形上反正则除数的存在性
- 批准号:
23654025 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on a new divisor problem arisen from the derivatives of the Riemann zeta function
黎曼zeta函数导数引起的新除数问题研究
- 批准号:
23740009 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Saito free divisors and uniformization equations
Saito自由因子和均匀化方程的研究
- 批准号:
23540077 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Signature divisor on the moduli of curves, signature defect and its applications
曲线模的签名除数、签名缺陷及其应用
- 批准号:
21540047 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The riemann zeta function and divisor functions
黎曼 zeta 函数和除数函数
- 批准号:
384583-2009 - 财政年份:2009
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Derive categories and infinite dimensional Lie allgebras associated with primitive forms
导出与原始形式相关的类别和无限维李代数
- 批准号:
20340011 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Defining ideals of projective varieities and their embedding structure
定义射影簇的理想及其嵌入结构
- 批准号:
20540039 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)