Theory of branching laws of unitary representations of reductive Lie groups and geometric realization of representations
还原李群酉表示的分支定律理论及表示的几何实现
基本信息
- 批准号:11440018
- 负责人:
- 金额:$ 3.39万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The branching law means the irreducible decomposition of an irreducible unitary representation of a group when restricted to a subgroup (e.g. decomposition of tensor products, breaking symmetry in physics,…). It is one of principal subjects in representation theory to find branching laws. Nevertheless, very little has been studied on branching laws of unitary representations, except for some special cases until mid-90s, partly because of analytic difficulties arising from infinite dimensions.1. Our main results during this period are to establish a basic theory of "discrete branching laws of infinite dimensional representations of semisimple Lie groups. Namely, based on new examples that we had found some years ago, we proposed a formulation of discrete branching laws, and proved a criterion for branching laws to be discretely decomposable by using both micro-local analysis and algebraic representation theory. Furthermore, we found new applications of these representation theoretic res … More ults to the following problems :i) Non-commutative harmonic analysis. To construct new discrete series representations for homogeneous spaces.ii) Automorphic forms. To prove a vanishing theorem of modular varieties for locally Riemannian symmetric spaces.Moreover, we found explicitly branching laws in certain settings in connection with conformal geometry.On these topics, I gave one-hour lectures in various international conferences, and a plenary lecture at MSJ for the Spring Prize (1999). Also, I gave series of lectures at European School (2000), at Harvard University (2001), and the Winter School at Czech Republic (2002)2. Since the late 1980s, I have initiated the study of the existence problem of compact CliffordKlein forms of pseudo-Riemannian homogeneous manifolds. Recently, this problem has been studied by different methods such as discrete groups, ergodic theory, symplectic geometry and unitary representation theory, revealing the interactions with other branches of mathematics.I wrote an expository survey on this area and posed some open problems in "Mathematics Unlimited, 2001 and beyond" as a project of the World Mathematical Year 2000. Less
分支定律意味着当限制为子群时,群的不可约酉表示的不可约分解(例如张量积的分解、物理学中的对称性破缺……)。寻找分支规律是表示论的主要课题之一。然而,直到90年代中期,除了一些特殊情况外,对酉表示的分支定律的研究还很少,部分原因是无限维引起的分析困难。1.这一时期我们的主要成果是建立了“半单李群无限维表示的离散分支律”的基本理论。即根据我们几年前发现的新例子,提出了离散分支律的表述,并利用微局域分析和代数表示理论证明了分支律可离散分解的判据。此外,我们还发现了这些新的应用。 表示理论导致以下问题:i) 非交换调和分析。为齐次空间构造新的离散级数表示。ii) 自同构形式。为了证明局部黎曼对称空间的模簇消失定理。此外,我们在与共形几何相关的某些设置中发现了明确的分支定律。在这些主题上,我花了一个小时 在各种国际会议上发表演讲,并在 MSJ 获得春季奖(1999 年)的全体演讲。此外,我还在欧洲学校(2000 年)、哈佛大学(2001 年)和捷克共和国冬季学校(2002 年)2 进行了一系列讲座。自20世纪80年代末以来,我开始研究伪黎曼齐次流形的紧CliffordKlein形式的存在问题。最近, 这个问题已经通过离散群、遍历理论、辛几何和酉表示论等不同方法进行了研究,揭示了与其他数学分支的相互作用。我写了一篇关于这一领域的说明性调查,并在“数学无限,2001年及以后”作为2000年世界数学年的项目中提出了一些开放性问题。
项目成果
期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Kobayashi, M. Kashiwara, T. Matsuki, K. Nishiyama, eds: "Analysis on Homogeneous Spaces and Representation theory of Lie Groups, Okayama - Kyoto"Kinokuniya Amer. Math. Soc.. 359 (2000)
T.Kobayashi、M. Kashiwara、T. Matsuki、K. Nishiyama 编:“齐次空间分析和李群表示理论,冈山 - 京都”Kinokuniya Amer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小林俊行, 大島利雄 (東京大学): "Lie群とLie環1 岩波講座,現代数学の基礎(改訂版)"岩波書店. 293+10 (2001)
Toshiyuki Kobayashi、Toshio Oshima(东京大学):“李群和李环 1 岩波讲座,现代数学基础(修订版)”岩波书店 293+10 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kobayashi, B.Orsted: "Analysis of the Minimal Representation of O(p, q)-III. Ultrahyperbolic equations on R^<p-1,q-1>"RIMS preprint. 1339. 36 (2001)
T.Kobayashi, B.Orsted:“O(p, q)-III 的最小表示分析。R^<p-1,q-1> 上的超双曲方程”RIMS 预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小林俊行-大島利雄: "Lie群とLie環 1 (岩波講座 現代数学の基礎)"岩波書店. 293+16 (1999)
Toshiyuki Kobayashi-Toshio Oshima:“李群和李环 1(岩波课程:现代数学基础)”岩波书店 293+16 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kobayashi: "Discontinuous groups for non-Riemannian homogeneous spaces"Mathematics Unlimited - 2001 and Beyond (eds. B. Engquist and W.Schmid). 723-748 (2000)
T.Kobayashi:“非黎曼齐次空间的不连续群”数学无限 - 2001 年及以后(B. Engquist 和 W.Schmid 编辑)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Toshiyuki其他文献
KOBAYASHI Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Toshiyuki', 18)}}的其他基金
Analysis of minimal representations and branching laws of infinite-dimensional representations
最小表示和无限维表示的分支规律分析
- 批准号:
22340026 - 财政年份:2010
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of signal transduction systems which are regulated by BHD tumor suppressor protein
阐明 BHD 肿瘤抑制蛋白调节的信号转导系统
- 批准号:
20590316 - 财政年份:2008
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation groups for geometric structures, global geometric analysis, and theory of branching laws of infinite dimensional representations
几何结构的变换群、全局几何分析和无限维表示的分支定律理论
- 批准号:
18340037 - 财政年份:2006
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of tumor suppressor function of Birt-Hogg-Dube syndrome gene(BHD)
Birt-Hogg-Dube综合征基因(BHD)抑癌功能的阐明
- 批准号:
18590380 - 财政年份:2006
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Abnormality of sugar/amino acid transport and ATP sensor in renal carcinogenesis
糖/氨基酸转运和ATP传感器异常在肾癌发生中的作用
- 批准号:
16590256 - 财政年份:2004
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of branching laws of unitary representations and non-commutative harmonic analysis by transformation groups of geometric structures
酉表示分支律理论和几何结构变换群的非交换调和分析
- 批准号:
14340043 - 财政年份:2002
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of tuberin by using animal models of tumor suppressor Tsc2-mutant.
利用抑癌基因 Tsc2 突变体动物模型对马铃薯蛋白进行功能分析。
- 批准号:
14580804 - 财政年份:2002
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of hamartin by use of Tscl knockout mice.
使用 Tscl 敲除小鼠进行 Hamartin 功能分析。
- 批准号:
12680819 - 财政年份:2000
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of Tsc2 gene product by conditional gene targeting.
通过条件基因打靶对 Tsc2 基因产物进行功能分析。
- 批准号:
10680783 - 财政年份:1998
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of the wild-type Tsc2 transgenic Eker rat and its effect on renal carcinogenesis.
野生型 Tsc2 转基因 Eker 大鼠的产生及其对肾癌发生的影响。
- 批准号:
08680915 - 财政年份:1996
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Singular unitary representation, rank and theta correspondance
奇异酉表示、秩和 theta 对应
- 批准号:
355464-2008 - 财政年份:2012
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Singular unitary representation, rank and theta correspondance
奇异酉表示、秩和 theta 对应
- 批准号:
355464-2008 - 财政年份:2011
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Analytic consequences of unitary representation theory
单一表示论的分析结果
- 批准号:
3176-2006 - 财政年份:2010
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Singular unitary representation, rank and theta correspondance
奇异酉表示、秩和 theta 对应
- 批准号:
355464-2008 - 财政年份:2010
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
The condition C and the property(T)-Looking for what is behind global variational methods and unitary representation theory
条件C和性质(T)——寻找全局变分方法和酉表示论背后的原因
- 批准号:
22654021 - 财政年份:2010
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analytic consequences of unitary representation theory
单一表示论的分析结果
- 批准号:
3176-2006 - 财政年份:2009
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Singular unitary representation, rank and theta correspondance
奇异酉表示、秩和 theta 对应
- 批准号:
355464-2008 - 财政年份:2009
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Analytic consequences of unitary representation theory
单一表示论的分析结果
- 批准号:
3176-2006 - 财政年份:2008
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Singular unitary representation, rank and theta correspondance
奇异酉表示、秩和 theta 对应
- 批准号:
355464-2008 - 财政年份:2008
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual
Analytic consequences of unitary representation theory
单一表示论的分析结果
- 批准号:
3176-2006 - 财政年份:2007
- 资助金额:
$ 3.39万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




