Mathematical Research on Mathematical Models of Quantum Computing

量子计算数学模型的数学研究

基本信息

项目摘要

The following results have been obtained on mathematical foundations on quantum Turing machine and quantumcircuits: (1) Local transition functions of quantum Turing machines (QTM) are generally characterized including multitape cases. (2) The notion of uniform quantum circuit families (UQCF) was introduced for the first time and developed their complexity theory nd proved the computational equivalence between QTMs and UQCF in Monte Caro type computations. (3) In order to solve the halting problem for QTMs, it has been proved that under a refined halting protocol measurements of halting flag do not disturb the probability distribution of the output of computations.The following results have been obtained on physical implementations of quantum logicgates: (1) Conservation laws limit theaccuracy of physical implementations of elementary quantum logic gates. (2) Although the SWAP gate has no conflict with the conservation law, the controlled-NOT gate, which is one of the universal quantum … More logic gates, cannot be implemented by any 2-qubit rotationally invariant unitary operation within error probability 1/16.. (3) If the computational basis is represented by a component of spin and physical implementations obey the angular momentum conservation law, any physically realizable quantum logicgates with n qubit ancilla cannot implement the controlled-NOT gate within the error probability 1/(4n^2). (4) An analogous relation holds for bosonic ancillae with the size defined through the average number of photons. Any set of universal gates inevitably obeys a related limitation with error probability O(n^<-2>). (5) The current theory demands the threshold error probability 10^5 10^6 for each quantum gate. Thus, a single controlled-NOT gate would not be in reality a unitary operation on a 2-qubitsystem but would be a unitary operation on a system with at least 100 qubits. (6) The present investigation suggests that the current choice of the computational basis should be modified so that the computational basis commutes with the conserved quantity. Less
在量子图灵机和量子电路的数学基础上,得到了如下结果:(1)量子图灵机(QTM)的局部转移函数的一般特征,包括多带情形。(2)首次提出了均匀量子电路族(UQCF)的概念,发展了它们的复杂性理论,证明了QTM和UQCF在Monte Caro计算中的计算等价性。(3)为了解决QTM的停机问题,我们证明了在一个改进的停机协议下,停机标志的测量不会干扰计算输出的概率分布,并在量子逻辑门的物理实现上得到了以下结果:(1)守恒律限制了基本量子逻辑门的物理实现的精度。(2)虽然SWAP门与守恒定律没有冲突,但作为量子力学中普遍存在的一种, ...更多信息 逻辑门,不能由错误概率1/16内的任何2量子比特旋转不变幺正操作来实现。(3)如果计算基础由自旋分量表示,并且物理实现遵循角动量守恒定律,则任何具有n量子位辅助的物理可实现的量子逻辑门都不能在错误概率1/(4n^2)内实现受控非门。(4)一个类似的关系也适用于玻色子的附肢,其大小是通过光子的平均数来定义的。任何一组通用门都不可避免地服从一个相关的限制,错误概率为O(n^<-2>)。(5)目前的理论要求每个量子门的阈值错误概率为10^5 10^6。因此,单个受控非门实际上不会是2量子位系统上的幺正操作,而是至少具有100量子位的系统上的幺正操作。(6)目前的调查表明,目前的选择的计算基础应加以修改,使计算基础与守恒量互换。少

项目成果

期刊论文数量(132)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Ozawa: "Operations, disturbance, and simultaneous measurability"Phys.Rev.A. 63・6. 032109(1-15) (2001)
M.Ozawa:“操作、干扰和同时可测量性”Phys.Rev.A. 032109(1-15) (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
C.Donati-Martin, H.Matsumoto, M.Yor: "On striking identities about the exponetial functionals of the Brownian bridge and Brownian Motion"Periodica Math.Hung.. 41. 103-119 (2000)
C.Donati-Martin、H.Matsumoto、M.Yor:“关于布朗桥和布朗运动的指数泛函的惊人恒等式”Periodica Math.Hung.. 41. 103-119 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Matsubara: "Stronger ideals over P_kλ"Fundamanta Mathematicae. (印刷中).
Y. Matsubara:“比 P_kλ 更强大的理想”Fundamanta Mathematicae(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ozawa: "Operations, disturbance, ands imultaneous measurability"Phys.Rev.. 63. 032109-1-032109-15 (2001)
H.Ozawa:“操作、干扰和同步可测量性”Phys.Rev.. 63. 032109-1-032109-15 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ozawa: "Controlling quantum state reduction"Phys.Lett.. 282. 336-342 (2001)
H.Ozawa:“控制量子态还原”Phys.Lett.. 282. 336-342 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OZAWA Masanao其他文献

OZAWA Masanao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OZAWA Masanao', 18)}}的其他基金

Study of Quantum Foundations and Quantum Set Theory
量子基础和量子集合论研究
  • 批准号:
    17K19970
  • 财政年份:
    2017
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of the Probabilistic Interpretation of Quantum Set Theory
量子集合论的概率解释研究
  • 批准号:
    15K13456
  • 财政年份:
    2015
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical Studies of Fundamental Principles of Quantum Theory
量子理论基本原理的数学研究
  • 批准号:
    26247016
  • 财政年份:
    2014
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of Quantum Set Theory Aiming at an Interpretation of Elements of Reality in Quantum Theory
旨在解释量子理论中现实元素的量子集合论研究
  • 批准号:
    24654021
  • 财政年份:
    2012
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Quantum Set Theory Aiming at Realistic Interpretation of Quantum Theory
量子集合论旨在现实地解释量子理论
  • 批准号:
    22654013
  • 财政年份:
    2010
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical study of quantum information
量子信息的数学研究
  • 批准号:
    21244007
  • 财政年份:
    2009
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Research of Quantum Information and Quantum Computing
量子信息与量子计算的数学研究
  • 批准号:
    14340028
  • 财政年份:
    2002
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unitary Representations of Hyperfinite Heisenberg Groups and Their Applications to Quantum Physics
超有限海森堡群的酉表示及其在量子物理中的应用
  • 批准号:
    08454039
  • 财政年份:
    1996
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

A stronger simulation of quantum Turing machines by quantum circuits and its implications
量子电路对量子图灵机的更强模拟及其影响
  • 批准号:
    518705-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A stronger simulation of quantum Turing machines by quantum circuits and its implications
量子电路对量子图灵机的更强模拟及其影响
  • 批准号:
    518705-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了