Unitary Representations of Hyperfinite Heisenberg Groups and Their Applications to Quantum Physics
超有限海森堡群的酉表示及其在量子物理中的应用
基本信息
- 批准号:08454039
- 负责人:
- 金额:$ 4.03万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an interdisciplinary research including foundations of mathematics, applied analysis, mathematical physics, and quantum mechanics. The representation theory of hyperfinite Heisenberg groups was instituted by Ojima and Ozawa in 1992 in order to give a unified framework for systematic applications of nonstandard analysis to quantum physics. The research results include results in foundations of mathematics relative to the nonstandard method and also includes results in applied analysis concerning various applications. The following are of particular importance relative to applications to quantum physics. Kelemen and Robinson reconstructed the phi^4_2 model of Glimm and Jaffe with methods of nonstandard analysis. In order to apply nonstandard analysis to other constructions of field models systematically, we generalize their nonstandard analytical methods of representing the canonical commutation relations in the framework of the theory of nonstandard unitary representations. As applications, the following representations are reconstructed in this framework : the Segal representation, relativistic time zero fields, and the Araki-Woods representation. In the next application of a representation of a hyperfinite Heisenberg group, we constructed a self-adjoint phase operator of a single-mode electromagnetic field in quantum mechanics. This operator is naturally considered as the limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is shown to be a Naimark extension of the optimal probability operator-valued measure found by Helstrom. A recent text book on quantum optics mentions our result as follows : The calculation of phase using this operator is formally similar to that using the Pegg-Barnett operator and gives the correct result within infinitesimal error, so that the calculation of phase becomes rather easier than the Pegg-Barnett method.
这是一个跨学科的研究,包括数学基础,应用分析,数学物理和量子力学。超有限海森堡群的表示理论是由Ojima和Ozawa在1992年建立的,目的是为量子物理中非标准分析的系统应用提供一个统一的框架。研究结果包括与非标准方法相关的数学基础的结果,也包括与各种应用有关的应用分析的结果。以下是相对于量子物理学的应用特别重要的。Kelemen和罗宾逊用非标准分析方法重建了Glimm和Jaffe的phi^4_2模型。为了将非标准分析系统地应用于其他场模型的构造,我们在非标准酉表示理论的框架下推广了他们表示正则对易关系的非标准分析方法.作为应用,在此框架下重建了以下表示:Segal表示,相对论时间零场和Araki-Woods表示。在超有限海森堡群表示的下一个应用中,我们构造了量子力学中单模电磁场的自伴相位算符。该算子自然地被认为是Pegg和巴内特提出的有限维空间上的近似相位算子的极限。该算子的谱测度是Helstrom发现的最优概率算子值测度的Naimark扩展。最近的一本量子光学教科书提到我们的结果如下:用这个算符计算相位在形式上类似于用Pegg-Barnett算符计算相位,并且在无穷小误差范围内给出正确的结果,因此相位的计算比Pegg-Barnett方法容易得多。
项目成果
期刊论文数量(99)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Ozawa: "Quantum state reduction and the quantum Bays principle" Quantum Communication, Computing, and Measurement (Plenum, New York, 1997). 233-241
M.Ozawa:“量子态约简和量子贝斯原理”量子通信、计算和测量(Plenum,纽约,1997 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masanao Ozawa: "Phase Operator Problem and Macroscopic Extemsiom of Quatuam Mechanics" Annals of Physics.
Masanao Ozawa:“量子力学的相算子问题和宏观极端”物理学年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ozawa: "On the concept of wave packet reduction II: Operational approach" J.Japan Assoc.Phil.Sci.24. 9-15 (1996)
M.Ozawa:“关于波包缩减的概念 II:操作方法”J.Japan Assoc.Phil.Sci.24。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ozawa: "Quantum nondemolition monitoring of universal quantum computers" Phys.Rev.Lett.80. 631-634 (1998)
M.Ozawa:“通用量子计算机的量子非拆除监测”Phys.Rev.Lett.80。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ozawa: "Controlling quantum state reduction" Preprint Series in Mathematical Sciences, Nagoya University. 1998-4. 1-9 (1998)
M.Ozawa:“控制量子态还原”数学科学预印本系列,名古屋大学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OZAWA Masanao其他文献
OZAWA Masanao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OZAWA Masanao', 18)}}的其他基金
Study of Quantum Foundations and Quantum Set Theory
量子基础和量子集合论研究
- 批准号:
17K19970 - 财政年份:2017
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study of the Probabilistic Interpretation of Quantum Set Theory
量子集合论的概率解释研究
- 批准号:
15K13456 - 财政年份:2015
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical Studies of Fundamental Principles of Quantum Theory
量子理论基本原理的数学研究
- 批准号:
26247016 - 财政年份:2014
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of Quantum Set Theory Aiming at an Interpretation of Elements of Reality in Quantum Theory
旨在解释量子理论中现实元素的量子集合论研究
- 批准号:
24654021 - 财政年份:2012
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum Set Theory Aiming at Realistic Interpretation of Quantum Theory
量子集合论旨在现实地解释量子理论
- 批准号:
22654013 - 财政年份:2010
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical study of quantum information
量子信息的数学研究
- 批准号:
21244007 - 财政年份:2009
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Research of Quantum Information and Quantum Computing
量子信息与量子计算的数学研究
- 批准号:
14340028 - 财政年份:2002
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Research on Mathematical Models of Quantum Computing
量子计算数学模型的数学研究
- 批准号:
11440028 - 财政年份:1999
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
- 批准号:
517518181 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Major Research Instrumentation
Nonlinear quantum optics using Rydberg excitons
使用里德堡激子的非线性量子光学
- 批准号:
2887904 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Studentship
Photophysics of Colloidal Semiconductor Nanoplatelets Relevant to Quantum Optics
与量子光学相关的胶体半导体纳米片的光物理学
- 批准号:
2304937 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Quantum Optics with Atomic Ensembles and Arrays
具有原子系综和阵列的量子光学
- 批准号:
2207423 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Continuing Grant
Quantum optics and sensing with diamond defects
量子光学和金刚石缺陷传感
- 批准号:
RGPIN-2020-04095 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear quantum optics in integrated structures
集成结构中的非线性量子光学
- 批准号:
572628-2022 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
University Undergraduate Student Research Awards
Quantum optics using Rydberg polaritons
使用里德伯极化子的量子光学
- 批准号:
EP/V030280/1 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Research Grant
Topological quantum optics
拓扑量子光学
- 批准号:
DGECR-2022-00122 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Discovery Launch Supplement
All-Fiber Quantum Optics with Colloidal Nanosemiconductors
具有胶体纳米半导体的全光纤量子光学
- 批准号:
RGPIN-2020-06986 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




