Mathematical Research of Quantum Information and Quantum Computing
量子信息与量子计算的数学研究
基本信息
- 批准号:14340028
- 负责人:
- 金额:$ 7.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.Heisenberg's uncertainty principle, which gives the trade-off between measurement noise and disturbance, has been reconsidered. Its limitation of the validity has been clarified and the universally valid generalization (universal uncertainty principle) has been established. If any measuring apparatus measures an observable A with noise ε(A) and disturbance η(B) on B, we have the relation ε(A)η(B)+ε(A)σ(B)+σ(A)η(B)≧(1/2)|<[A,B]>|, where σ stands for the standard deviation in the state just before the measurement.2.It has been shown that, if the noise ε(A) and the disturbance η(B) are statistically independent from the initial state of the measured object, we have the original Heisenberg relation ε(A)η(B)≧(1/2)|<[A,B]>|.3.From the universal uncertainty principle, Wigner-Araki-Yanase (WAY), found in 1952 to set a limitation of measurements under conservation law, has been quantitatively generalized to a reciprocal relation between the mean-square-noise of the measurement and the variance of the conserved quantity.4.As a consequence from the universal uncertainty principle, it has been shown that the angular momentum conservation law sets a limitation to the accuracy of quantum gate operations, the accuracy of the CNOT gate controlled by an interaction with n qubit ancilla system is limited with error probability at least 1/(4n^2), and the CNOT controlled by the electro-magnetic field with average photon N is limited with error probability at least 1/(16N).
1.重新考虑了Heisenberg的测不准原理,它给出了测量噪声和干扰之间的折衷。阐明了其有效性的局限性,建立了普遍有效的推广(泛测不准原理)。如果任何测量仪器测量一个具有噪声ε(A)和干扰η(B)的可观测量A,我们有关系ε(A)η(B)+ε(A)σ(B)+σ(A)η(B)<$(1/2)|<[A,B]>| 2.证明了如果噪声ε(A)和扰动η(B)与被测物体的初始状态统计无关,则有原始的海森堡关系ε(A)η(B)(1/2)|<[A,B]>| 3.从普适测不准原理出发,将1952年Wigner-Araki-Yanase(WAY)在守恒律下提出的测量极限,定量地推广为测量均方噪声与守恒量方差之间的倒数关系。已经表明,角动量守恒定律对量子门操作的精度设置了限制,由与n量子位辅助系统的相互作用控制的CNOT门的精度被限制为具有至少1/(4n^2)的错误概率,并且平均光子数N的电磁场控制的CNOT被限制为误差概率至少为1/(16 N)。
项目成果
期刊论文数量(217)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UNCERTAINTY PRINCIPLE FOR QUANTUM INSTRUMENTS AND COMPUTING
- DOI:10.1142/s0219749903000437
- 发表时间:2003-10
- 期刊:
- 影响因子:1.2
- 作者:M. Ozawa
- 通讯作者:M. Ozawa
Free transportation cost inequalities via random matrix approximation,
通过随机矩阵近似消除运输成本不等式,
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:F.Hiai;D.Petz;Y.Ueda
- 通讯作者:Y.Ueda
Universal uncertainty principle and quantum state control under conservation laws
守恒定律下的普遍不确定性原理和量子态控制
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Hotta;T.Karasawa;M.Ozawa;M.Ozawa
- 通讯作者:M.Ozawa
Masanao Ozawa: "Quantum Limits of Measurement and Computing Induced by Conservation Laws and Uncertainty Relations"Proceedings of the 6^<th> International Conference on Quantum Communication, Measurement and Computing (QCMC'02). (発表予定). (2003)
Masanao Ozawa:“守恒定律和不确定性关系引起的测量和计算的量子极限”第六届量子通信、测量和计算国际会议 (QCMC02) 论文集(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OZAWA Masanao其他文献
OZAWA Masanao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OZAWA Masanao', 18)}}的其他基金
Study of Quantum Foundations and Quantum Set Theory
量子基础和量子集合论研究
- 批准号:
17K19970 - 财政年份:2017
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study of the Probabilistic Interpretation of Quantum Set Theory
量子集合论的概率解释研究
- 批准号:
15K13456 - 财政年份:2015
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical Studies of Fundamental Principles of Quantum Theory
量子理论基本原理的数学研究
- 批准号:
26247016 - 财政年份:2014
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of Quantum Set Theory Aiming at an Interpretation of Elements of Reality in Quantum Theory
旨在解释量子理论中现实元素的量子集合论研究
- 批准号:
24654021 - 财政年份:2012
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum Set Theory Aiming at Realistic Interpretation of Quantum Theory
量子集合论旨在现实地解释量子理论
- 批准号:
22654013 - 财政年份:2010
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mathematical study of quantum information
量子信息的数学研究
- 批准号:
21244007 - 财政年份:2009
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Research on Mathematical Models of Quantum Computing
量子计算数学模型的数学研究
- 批准号:
11440028 - 财政年份:1999
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unitary Representations of Hyperfinite Heisenberg Groups and Their Applications to Quantum Physics
超有限海森堡群的酉表示及其在量子物理中的应用
- 批准号:
08454039 - 财政年份:1996
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Quantum measurement of RF sensor linearity based on Rabi frequency
基于拉比频率的射频传感器线性度的量子测量
- 批准号:
23K03892 - 财政年份:2023
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum measurement as a resource
量子测量作为资源
- 批准号:
DP220101793 - 财政年份:2022
- 资助金额:
$ 7.3万 - 项目类别:
Discovery Projects
Development of Single-Molecule Epi-transcriptome Quantum measurement method
单分子表观转录组量子测量方法的开发
- 批准号:
21H01741 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum measurement system of optical beat note for observing cosmic gravitational-wave background originating from the inflation
用于观测暴胀宇宙引力波背景的光拍音量子测量系统
- 批准号:
21K13933 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantum State Generation of THz-Light and Exploration of Quantum Measurement Applications
太赫兹光量子态生成及量子测量应用探索
- 批准号:
21H03747 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum Epistemology Beyond Quantum Measurement
超越量子测量的量子认识论
- 批准号:
2043089 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Continuing Grant
Physical quantum dynamics and quantum measurement
物理量子动力学和量子测量
- 批准号:
RGPIN-2016-04924 - 财政年份:2021
- 资助金额:
$ 7.3万 - 项目类别:
Discovery Grants Program - Individual
Graphene/diamond heterojunction formation for high sensitive quantum measurement
用于高灵敏度量子测量的石墨烯/金刚石异质结形成
- 批准号:
20K21136 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Studying single quantum measurement using sequential measurements
使用顺序测量研究单量子测量
- 批准号:
518333-2018 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Physical quantum dynamics and quantum measurement
物理量子动力学和量子测量
- 批准号:
RGPIN-2016-04924 - 财政年份:2020
- 资助金额:
$ 7.3万 - 项目类别:
Discovery Grants Program - Individual