Research of submanifolds in a symmetric space by using infinite dimensional geometry
利用无限维几何研究对称空间中的子流形
基本信息
- 批准号:18540099
- 负责人:
- 金额:$ 1.52万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the first study result of 2006, we obtained a Chevalley type restriction theorem for a proper complex equifocal submanifold in a symmetric space of non-compact type. The proof was performed by investigating the lift of its complexification to some infinite dimensional anti-Kaehlerian space. Here we note that principal orbits of Hermann type actions on the symmetric Name are proper complex equifocal submanifolds. This research was performed by the head investigator. As the second study result, we almost classified complex hyperpolar actions with total geodesic orbit on a symmetric space of non-compact type. Here we note that principal orbits of complex hyperpolar actions are complex equifocal submanifolds and that conversely homogeneous complex equifocal submanifolds war as principal orbits of complex hyperpolar actions. Also, we note that Hermann type actions are complex hyperpolar actions. This research was performed by the head investigator. As the third study result, we classified cohomogeneity one actions on rankone symmetric spaces of non-compact type. This research was performed by Professor Hiroshi Tamaru of the investigator and Professor Jurgen Berndt.As the first study result of 2007, we completed almost the proof of the homogeneity theorem for irreducible proper complex equifocal submanifolds of codimension greater than one in a symmetric space of non-compact type. The proof was performed by investigating the lift of its complexification to some infinite dimensional anti-Kaehlerian space. This research was performed by the head investigator. As the second study result, we completed almost the proof of the non-existence theorem of equifocal submanifolds with non-Bat section in an irreducible symmetric space of rank greater than one, which is an open problem. This research was performed by the head investigator.
作为2006年的第一个研究结果,我们得到了非紧型对称空间中真复等焦子流形的Chevalley型限制定理。证明是通过研究它的复化到某个无穷维反凯勒空间的提升来进行的。这里我们注意到对称Name上的Hermann型作用的主轨道是真复等焦子流形。本研究由首席研究员进行。作为第二个研究结果,我们对非紧型对称空间上具有全测地轨道的复超极作用几乎进行了分类。这里我们注意到复超极作用的主轨道是复等焦子流形,反之齐次复等焦子流形也是复超极作用的主轨道。同时,我们注意到Hermann型作用量是复超极作用量.本研究由首席研究员进行。作为第三个研究结果,我们对非紧型秩对称空间上的上齐性作用进行了分类。本研究由研究者田丸浩教授和Jurgen Berndt教授共同完成,作为2007年的第一个研究成果,我们几乎完成了非紧型对称空间中余维大于1的不可约真复等域子流形的齐性定理的证明。证明是通过研究它的复化到某个无穷维反凯勒空间的提升来进行的。本研究由首席研究员进行。作为第二个研究结果,我们完成了秩大于1的不可约对称空间中具有非Bat截面的等焦子流形不存在性定理的基本证明,这是一个公开问题。本研究由首席研究员进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orderings and non-formal deformation quantization
排序和非形式变形量化
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Y.Maeda;et al
- 通讯作者:et al
Weakly reflective orbits and tangentially degenerate orbits of s-representations
s 表示的弱反射轨道和切向简并轨道
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Hiroshi;Tamaru;田丸 博士;酒井 高司
- 通讯作者:酒井 高司
Cohomogeneity one actions on symmetric spaces of rank one,and of higher rank
同齐性一作用于一阶和更高阶的对称空间
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Takashi;Sakai;酒井 高司;田丸 博士
- 通讯作者:田丸 博士
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOIKE Naoyuki其他文献
KOIKE Naoyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOIKE Naoyuki', 18)}}的其他基金
Research of submanifolds in symmetric spaces by usingthe infinite dimensional geometry and the complexification
利用无限维几何和复化研究对称空间中的子流形
- 批准号:
21540095 - 财政年份:2009
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
微分方程式と微分幾可学の特異点論的研究
微分方程与微分几何的奇异性理论研究
- 批准号:
04J09006 - 财政年份:2004
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




