Mathematical Fundation of Fractals

分形数学基础

基本信息

  • 批准号:
    14340034
  • 负责人:
  • 金额:
    $ 9.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to study fractal from various mathematical viewpoints, for example, analysis, probability, ergode theory, dynamical systems and applied mathematics. We had two conferences in accordance with the purpose of this project. The first one held in the first year of the project. We discussed what was the main issues and how we should approach them. The second one held in in the last year of the project was to get together all the results we obtained in this project. The followings are the selection of results from this project. Kigami has shown that under the volume doubling condition, the upper Li-Yau type estimate of heat kernels is equivalent to the local Nash inequality and the escape time estimate. Kumagai along with Barlow and Bass has shown that the Li-Yau type heat kernel estimate is stable under a perturbation. Ito has studied beta-transform and the associated tiling of the Euclidean space. Kameya has made clear the relation between Julia sets and the self-similar sets. Hino has shown that the energy measure associated with the self-similar Dirichlet form on the Sierpinski gasket is mutually singular with any self-similar measure. Finally Kigami and Kameyama have obtained a relation between the topological property of a self-similar set and the asymptotic behavior of a diffusion process on it.
本计画的目的是从分析、机率、遍历理论、动力系统及应用数学等不同的数学观点来研究分形。我们根据这个项目的目的举行了两次会议。第一次是在项目的第一年。我们讨论了什么是主要问题以及我们应该如何处理这些问题。第二次是在项目的最后一年举行的,目的是收集我们在这个项目中取得的所有成果。以下是该项目的成果选择。Kigami证明了在体积加倍条件下,热核的上Li-Yau型估计等价于局部Nash不等式和逃逸时间估计。Kumagai沿着Barlow和Bass证明了Li-Yau型热核估计在扰动下是稳定的。伊藤研究了β-变换和相关的欧氏空间的平铺。Kameya明确了Julia集与自相似集之间的关系。日野证明了与谢尔宾斯基垫片上的自相似狄利克雷形式相关的能量测度与任何自相似测度都是相互奇异的。最后,Kigami和Kameyama得到了自相似集的拓扑性质与其上扩散过程的渐近行为之间的关系。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hino, Masanori, Ramrez, Jos A.: "Small-time Gaussian behavior of symmetric diffusion semigroups"Ann.Probab.. 31. 1254-1295 (2003)
Hino, Masanori, Ramrez, Jos A.:“对称扩散半群的小时高斯行为”Ann.Probab.. 31. 1254-1295 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kameyama, Atsushi: "On Julia sets of postcritically finite branched coverings. I. Coding of Julia sets"J.Math.Soc.Japan. 55. 439-454 (2003)
Kameyama,Atsushi:“论 Julia 集的后临界有限分支覆盖。I. Julia 集的编码”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hambly, B.M., Kumagai, T.: "Diffusion processes on fractal fields : heat kernel estimates and large deviations"Probab. Theory Related Fields. 127. 305-352 (2003)
Hambly,B.M.,Kumagai,T.:“分形场上的扩散过程:热核估计和大偏差”概率。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ito, Shunji, Fujii, Junko, Higashino, Hiroko, Yasutomi, Shin-ichi: J. Number Theory. 99. 255-283 (2003)
伊藤、俊二、藤井、顺子、东野、弘子、安富、新一:J. 数论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kigami, Jun: "Harmonic analysis for resistance forms"J.Funct.Anal.. 204-NO.2. 399-444 (2003)
Kigami, Jun:“阻力形式的谐波分析”J.Funct.Anal.. 204-NO.2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIGAMI Jun其他文献

KIGAMI Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIGAMI Jun', 18)}}的其他基金

Interaction between areas of Mathematics related to internal structures of fractals
与分形内部结构相关的数学领域之间的相互作用
  • 批准号:
    23340025
  • 财政年份:
    2011
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Aspects of Mathematics on Fractals
分形数学方面
  • 批准号:
    20340017
  • 财政年份:
    2008
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Aspects of Mathematics on Fractals
分形数学方面
  • 批准号:
    17340026
  • 财政年份:
    2005
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on vibrations and diffusions on fractals
分形振动和扩散研究
  • 批准号:
    11837008
  • 财政年份:
    1999
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
  • 批准号:
    2337646
  • 财政年份:
    2024
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
ATD: Fast Bayesian Anomalies Detection in Dynamical System Time-varying Parameters
ATD:动态系统时变参数中的快速贝叶斯异常检测
  • 批准号:
    2318883
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Multiscale dynamical system modelling to understand resilience in brain aging and dementia
多尺度动力系统建模以了解大脑衰老和痴呆症的恢复能力
  • 批准号:
    485781
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Operating Grants
A Constructive Elucidation of Fall Mechanisms in the Elderly Based on the Saddle-Center Dynamical System
基于鞍中心动力系统对老年人跌倒机制的建设性阐释
  • 批准号:
    23KJ1417
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamical system analysis for physical reservoir computing using limit cycles
使用极限环进行物理油藏计算的动力系统分析
  • 批准号:
    22KJ1786
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Dynamical system analysis of constructed machine learning model from time-series data
从时间序列数据构建机器学习模型的动力系统分析
  • 批准号:
    22K17965
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
First-Order Method-Based Optimization for Dynamical System Control and Its Engineering Applications
基于一阶方法的动力系统控制优化及其工程应用
  • 批准号:
    22K14279
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deep Learning for Dynamical System Identification for Nonlinear Model Predictive Control applied to Renewable Energy and Energy Efficiency
用于可再生能源和能源效率的非线性模型预测控制动态系统辨识的深度学习
  • 批准号:
    555943-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Application of substitutive dynamical system to number theory
代换动力系统在数论中的应用
  • 批准号:
    20K03528
  • 财政年份:
    2020
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-Driven Learning Optimization of Dynamical System with Stochastic Uncertainty and Its Application
随机不确定性动态系统的数据驱动学习优化及其应用
  • 批准号:
    19K15019
  • 财政年份:
    2019
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了