MATHEMATICAL AND PHYSICAL STUDIES ON SINGULAR FLUID-DYNAMIC LIMITS FOR THE BOLTZMANN EQUATION

Boltzmann方程奇异流体动力极限的数学和物理研究

基本信息

  • 批准号:
    14350047
  • 负责人:
  • 金额:
    $ 9.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

1.Flows of a vapor with evaporation and condensation on the boundary was considered in the presence of a tiny amount of an inert gas. New type of fluid dynamics describing such flows was derived systematically by considering the fluid-dynamic limit of the Boltzmann equation and its boundary condition. The new fluid dynamics revealed the fact that the presence of the inert gas with an infinitesimal average concentration has a significant effect on the overall vapor flow.2.A binary mixture of vapors evaporating from the plane condensed phase and flowing toward infinity and the same mixture flowing from infinity and condensing on the plane condensed phase (half-space problem) were investigated on the basis of kinetic theory. First, the case of weak evaporation and condensation was considered. The flow of the vapors and the relationship among the parameters (associated with the condensed phase and the vapors at infinity) were clarified by means of an accurate numerical analysis of the line … More arized Boltzmann equation. The mathematical proof of the existence and uniqueness of the solution of this problem was also given. The relationship among the parameters provides the boundary condition for the fluid-dynamic equations in the fluid-dynamic limit for the slow flows of the mixture of vapors around the condensed phases of arbitrary shape. In addition, it was shown that, in the actual half-space problem, the nonlinearity becomes important even in the case of weak evaporation and condensation and changes the features of condensing flows dramatically from those of evaporating flows.3.By considering the fluid-dynamic limit of the Boltzmann equation, the ghost effect (the fact that the flows with infinitesimal speed have significant effects on the temperature field in this limit) was demonstrated in various physical situations. For example, the deformation of the temperature field caused by infinitesimal Benard convections in a gas between two parallel plates, the deformation of the temperature field caused by infinitesimal Taylor vortices in a gas between two cylinders at rest, and the deformation of partial pressures caused by infinitesimal evaporation and condensation in vapors at rest between two condensed phases have been clarified. Less
1.考虑了在有少量惰性气体存在的情况下,边界上有蒸发和凝结的蒸汽流动。通过考虑Boltzmann方程的流体动力学极限及其边界条件,系统地导出了描述这种流动的新型流体动力学。新的流体力学揭示了这样一个事实,即具有无穷小平均浓度的惰性气体的存在对总的蒸气流动有显著的影响。2.基于动力学理论,研究了二元混合蒸气从平面凝聚相蒸发并流向无穷远和相同的混合蒸气从无穷远流动并在平面凝聚相上冷凝(半空间问题)。首先,考虑了弱蒸发和凝结的情况。通过对该线的精确数值分析,阐明了蒸汽的流动和参数之间的关系(与冷凝相和无穷远处的蒸汽有关 ...更多信息 玻尔兹曼方程给出了该问题解的存在唯一性的数学证明。参数之间的关系提供了流体动力学方程的边界条件,在流体动力学限制的蒸汽混合物周围的任意形状的冷凝相的缓慢流动。此外,在实际的半空间问题中,即使在弱蒸发和冷凝的情况下,非线性也变得很重要,并且显著地改变了冷凝流动的特征。3.通过考虑Boltzmann方程的流体动力学极限,在各种物理情况下证明了虚影效应(具有无穷小速度的流动在该极限下对温度场具有显著影响的事实)。例如,在两个平行板之间的气体中由无穷小的Benard对流引起的温度场的变形,在两个静止圆柱之间的气体中由无穷小的Taylor涡引起的温度场的变形,以及在两个冷凝相之间的静止蒸汽中由无穷小的蒸发和冷凝引起的分压的变形已经被阐明。少

项目成果

期刊论文数量(120)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vapor flows condensing at incidence onto a plane condensed phase in the presence of a noncondensable gas. I. Subsonic condensation
在存在不可凝气体的情况下,蒸气流在入射到平面凝相上时凝结。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Satoshi Taguchi
  • 通讯作者:
    Satoshi Taguchi
Flows of a binary mixture of rarefied gases between two parallel plates
稀薄气体二元混合物在两个平行板之间的流动
Bifurcation of a flow of a gas between rotating coaxial circular cylinders with evaporation and condensation
旋转同轴圆柱体之间气流的分叉,伴有蒸发和冷凝
Shigeru Takata: "Various transport coefficients occurring in binary gas mixtures and their database"Rarefied Gas Dynamics, edited by E.P.Muntz and A.Ketsdever (AIP, Melville). (to be published). (2003)
Shigeru Takata:“二元气体混合物中出现的各种传输系数及其数据库”Rarefied Gas Dynamics,由 E.P.Muntz 和 A.Ketsdever 编辑(AIP,梅尔维尔)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuo Aoki: "Finite-difference methods for the Boltzmann equation for binary gas mixtures"Modelling and Computational Aspects of Kinetic Equations eds. P. Degond et al. (Birkhauser, Boston). (to be published). (2004)
Kazuo Aoki:“二元气体混合物玻尔兹曼方程的有限差分方法”动力学方程的建模和计算方面编辑。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AOKI Kazuo其他文献

AOKI Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AOKI Kazuo', 18)}}的其他基金

Drying and dehydration in swelling materials
溶胀材料的干燥和脱水
  • 批准号:
    21560206
  • 财政年份:
    2009
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discontinuous boundary conditions for the Boltzmann equation And generalization of slip boundary conditions
玻尔兹曼方程的不连续边界条件和滑移边界条件的推广
  • 批准号:
    21656026
  • 财政年份:
    2009
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development and evaluation of a foot grip strength measurement tool for prediction of fall accident risk
用于预测跌倒事故风险的足部握力测量工具的开发和评估
  • 批准号:
    20570231
  • 财政年份:
    2008
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prevalence of H. pylori Infection and Chronic Atrophic Gastritis in the Dominican Children
多米尼加儿童幽门螺杆菌感染和慢性萎缩性胃炎的患病率
  • 批准号:
    20590606
  • 财政年份:
    2008
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical and physical study of micro- and nano-scale gas flows on the basis of the Boltzmann equation
基于玻尔兹曼方程的微纳尺度气体流动的数学和物理研究
  • 批准号:
    20360046
  • 财政年份:
    2008
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Freezing in Colloidal Suspension and the Control of Fine Particles by Alternating Electric Field
胶体悬浮液的冻结及交变电场对细颗粒的控制
  • 批准号:
    19560198
  • 财政年份:
    2007
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epidemiological Study on the Effect of Helicobacter Pylori Infection on Chronic Atrophic Gastritis in Different Ethnic Groups
不同民族幽门螺杆菌感染对慢性萎缩性胃炎影响的流行病学研究
  • 批准号:
    18406022
  • 财政年份:
    2006
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Effects of Electric Double Layer on Freezing and dehydration in Fine Packed Beds with Liquid Content
双电层对含液细填充床冷冻脱水的影响
  • 批准号:
    17560177
  • 财政年份:
    2005
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect on life style to Helicobacter pylori infection and/or chronic atrophic gastritis in the tropics
热带地区生活方式对幽门螺杆菌感染和/或慢性萎缩性胃炎的影响
  • 批准号:
    17590518
  • 财政年份:
    2005
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Microwave Heating in Rectangular Waveguide and Rectangular Cavity
矩形波导和矩形腔内微波加热的控制
  • 批准号:
    15560176
  • 财政年份:
    2003
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

RUI: Development of Fast Methods for Solving the Boltzmann Equation through Reduced Order Models, Machine Learning, and Optimal Transport
RUI:开发通过降阶模型、机器学习和最优传输求解玻尔兹曼方程的快速方法
  • 批准号:
    2111612
  • 财政年份:
    2021
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
CAREER: Hilberts Sixth Problem in the Boltzmann equation
职业生涯:玻尔兹曼方程中的希尔伯特第六个问题
  • 批准号:
    2047681
  • 财政年份:
    2021
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Continuing Grant
Electron heating in capacitive RF plasmas based on moments of the Boltzmann equation: From fundamental understanding to predictive control
基于玻尔兹曼方程矩的电容式射频等离子体中的电子加热:从基本理解到预测控制
  • 批准号:
    428942393
  • 财政年份:
    2019
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Research Grants
CDS&E: DEterministic Evaluation of Kinetic Boltzmann equation with Spectral H/p/v Accuracy (DEEKSHA)
CDS
  • 批准号:
    1854829
  • 财政年份:
    2019
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
Nonlinear microlocal analysis for the Boltzmann equation
玻尔兹曼方程的非线性微局域分析
  • 批准号:
    17K05318
  • 财政年份:
    2017
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Development of Fast Scalable Adaptive High Order Methods for Solving the Boltzmann Equation
RUI:开发用于求解玻尔兹曼方程的快速可扩展自适应高阶方法
  • 批准号:
    1620497
  • 财政年份:
    2016
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
Singularity Analysis of Solutions to the Boltzmann Equation near the Boundary
玻尔兹曼方程边界附近解的奇异性分析
  • 批准号:
    15K17572
  • 财政年份:
    2015
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of multi-dimensional supernova explosions by 6D Boltzmann equation
利用6D玻尔兹曼方程研究多维超新星爆炸
  • 批准号:
    15K05093
  • 财政年份:
    2015
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly efficient numerical solution of the Boltzmann equation for practical applications
玻尔兹曼方程的实际应用的高效数值求解
  • 批准号:
    1438530
  • 财政年份:
    2014
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
Maximum Entropy Closure of Boltzmann-Equation Moment-Hierarchy
玻尔兹曼方程矩层次的最大熵闭合
  • 批准号:
    1418903
  • 财政年份:
    2014
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了