General Research on the Charge Simulation Method and the Numerical Conformal Mapping
电荷模拟方法与数值共角映射的综合研究
基本信息
- 批准号:12440029
- 负责人:
- 金额:$ 5.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The numerical conformal mapping has been an important subject in computational mathematics. On the other hand, the charge simulation method is a simple accurate solver for the Dirichlet problem of the Laplace equation.1.We have proposed a simple method of numerical conformal mappings of multiply-connected domains onto the canonical domains of Nehari (Mc-Graw Hill, 1952), i.e., (a) the parallel slit domain, (b) the circular slit domain, (c) the radial slit domain, (d) the circle with concentric circular slits and (e) the circular ring with concentric circular slits. The method uses the charge simulation method on the complex plane, i.e., a linear combination of complex logarithmic functions, and gives approximate mapping functions with high accuracy if boundary curves and boundary data are analytic.2.We have successfully applied the numerical conformal mapping to potential flow analysis, and presented simple methods to find the stagnation points around obstacles and to compute the forces on obstacles.3.We have presented some techniques to apply the charge simulation method to domains with corners or slits. We also presented new types of the charge simulation method applicable to periodic domains, which use periodic fundamental solutions of the problem instead of logarithmic functions.4.We proved the unique solvability of the linear systems appearing in the invariant scheme of the charge simulation method.These results revive the classical method using fundamental solutions as a modern method in the computer age.
数值保角映射一直是计算数学中的一个重要课题。另一方面,电荷模拟法是求解拉普拉斯方程Dirichlet问题的一种简单精确的方法。1.我们提出了一种简单的多重连通区域到Nehari正则区域的数值共形映射方法(Mc-Graw Hill,1952),即(A)平行狭缝区域,(B)圆形狭缝区域,(C)径向狭缝区域,(D)带同心圆缝的圆和(E)带同心圆缝的圆环。该方法使用复平面上的电荷模拟方法,即复对数函数的线性组合,在分析边界曲线和边界数据的情况下,给出了高精度的近似映射函数。2.成功地将数值保角映射应用到势流分析中,并给出了寻找障碍物周围的停滞点和计算障碍物上的力的简单方法。我们还提出了适用于周期域的新型电荷模拟方法,它使用问题的周期基本解来代替对数函数。4.证明了电荷模拟方法不变格式中出现的线性系统的唯一可解性,这些结果使利用基本解作为现代方法的经典方法在计算机时代复兴。
项目成果
期刊论文数量(308)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Okano, D., Ogata, H., Amano, K., Sugihara M.: "Numerical Conformal Mappings of Bounded Multiply-Connected Domains by the Charge Simulation Method"Journal of Computational and Applied Mathematics. (To appear).
Okano, D.、Ogata, H.、Amano, K.、Sugihara M.:“通过电荷模拟方法进行有界多重连通域的数值共形映射”计算与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yotsutani, S.: "Canonical form related with radial solutions of semilinear elliptic equations and its applications"Taiwanese Journal of Mathematics. 5・3. 507-517 (2001)
四谷S.:“与半线性椭圆方程的径向解相关的正则形式及其应用”,台湾数学杂志5・3(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Amano, K., Okano, D., Ogata, H. and Sugihara, M.: "Numerical conformal mappings of unbounded multiply-connected domains by the charge simulation method"Bulletin of the Malaysian Mathematical Sciences Society. Vol.25, No.2 (to appear). (2002)
Amano, K.、Okano, D.、Ogata, H. 和 Sugihara, M.:“通过电荷模拟方法进行无界多重连通域的数值共形映射”马来西亚数学科学会通报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ikeda, H., Kondo, K., Okamoto, H. and Yotsutani, S.: "On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows"Communication on Pure and Applied Analysis. (to appear). (2003)
Ikeda, H.、Kondo, K.、Okamoto, H. 和 Yotsutani, S.:“Oseen 螺旋流中出现的非局部边值问题的解决方案的全局分支”纯粹与应用分析交流。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yotsutani, S.: "Canonical form related with radial solutions of semilinear elliptic equations and its applications"Taiwanese J.Math.. Vol.5, No.3. 507-517 (2001)
四谷S.:“半线性椭圆方程径向解的正则形式及其应用”台湾数学杂志第5卷第3期。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMANO Kaname其他文献
AMANO Kaname的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMANO Kaname', 18)}}的其他基金
Research on the Charge Simulation Method and the Numerical Conformal Mapping
电荷模拟方法与数值共形映射研究
- 批准号:
19340024 - 财政年份:2007
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Conformal Mappings by the Charge Simulation Method and Their Applications to Fluid Mechanics
电荷模拟方法的数值共形映射及其在流体力学中的应用
- 批准号:
15340033 - 财政年份:2003
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Conformal Mapping and Its Application to the Two-Dimensional Potential Flow Analysis
数值共形映射及其在二维势流分析中的应用
- 批准号:
09440081 - 财政年份:1997
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Some Questions in Inverse Problems and the Mixed Problem for Laplace's Equation in Lipschitz Domains
Lipschitz域拉普拉斯方程反问题和混合问题中的几个问题
- 批准号:
0099921 - 财政年份:2001
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
The Schwarz function in free or moving boundary problems for Laplace's equation
拉普拉斯方程的自由或移动边界问题中的 Schwarz 函数
- 批准号:
109698-1992 - 财政年份:1994
- 资助金额:
$ 5.25万 - 项目类别:
Discovery Grants Program - Individual
The Schwarz function in free or moving boundary problems for Laplace's equation
拉普拉斯方程的自由或移动边界问题中的 Schwarz 函数
- 批准号:
109698-1992 - 财政年份:1993
- 资助金额:
$ 5.25万 - 项目类别:
Discovery Grants Program - Individual
The Schwarz function in free or moving boundary problems for Laplace's equation
拉普拉斯方程的自由或移动边界问题中的 Schwarz 函数
- 批准号:
109698-1992 - 财政年份:1992
- 资助金额:
$ 5.25万 - 项目类别:
Discovery Grants Program - Individual
An Application-Specific Computer for Laplace's Equation
拉普拉斯方程的专用计算机
- 批准号:
9061185 - 财政年份:1991
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
A Software Tool for Analytical Solutions of Laplace's Equation
拉普拉斯方程解析解的软件工具
- 批准号:
9060714 - 财政年份:1991
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant
Mathematical Sciences: Integral Equation Methods for the Solution of Laplace's Equation
数学科学:解拉普拉斯方程的积分方程方法
- 批准号:
8403131 - 财政年份:1984
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant