Numerical Conformal Mappings by the Charge Simulation Method and Their Applications to Fluid Mechanics
电荷模拟方法的数值共形映射及其在流体力学中的应用
基本信息
- 批准号:15340033
- 负责人:
- 金额:$ 5.06万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The numerical conformal mapping has been an important subject in computational and applied mathematics. Our major concern is to develop new methods of numerical conformal mappings by the charge simulation method (or the fundamental solution method) and apply them to potential flow problems.1.We constructed approximate mapping functions of the conformal mapping w= f(z) of an unbounded multiply connected domains D onto the unbounded canonical slit domains of Nehari (Mc-Graw Hill, 1952) under the condition f(v) = ∞, where v is a finite point given in the problem domain. They were applied to the problem of potential flows past obstacles caused by a dipole source, a pair of positive and negative vortexes or a pair of point source and sink.2.We constructed by the charge simulation method approximate mapping functions of the conformal mapping of bounded multiply connected domains onto all the unbounded and bounded canonical slit domains of Nehari.3.We proposed a new technique to apply the charge simulation method to a nonlinear compressible fluid flow problem. We also proposed a fundamental solution method for viscous flow problems with obstacles in a periodic array, which gives an approximate solution by a linear combination of periodic fundamental solutions.4.We proved the convergence of the approximate mapping function obtained by the charge simulation method.Many other interesting results were obtained in relation to methods of numerical computation and thier application to fluid mechanics.
数值保角变换一直是计算数学和应用数学中的一个重要课题。我们主要关注的是用电荷模拟方法来发展数值共形映射的新方法1.构造了无界多连通域D的保角映射w= f(z)到Nehari的无界正则狭缝域的近似映射函数(Mc-Graw Hill,1952)在f(v)= ∞的条件下,其中v是问题域中给定的有限点。它们被应用于由偶极子源引起的通过障碍物的势流问题,2.利用电荷模拟方法构造了有界多连通域到所有无界和有界正则Nehari缝域的共形映射的近似映射函数; 3.提出了一种新的电荷模拟方法非线性可压缩流体流动问题。我们还提出了一种基本解方法,它通过周期基本解的线性组合给出了粘性流动问题的近似解。4.我们证明了用电荷模拟方法得到的近似映射函数的收敛性。在数值计算方法及其在流体力学中的应用方面,得到了许多有趣的结果。
项目成果
期刊论文数量(101)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent developments of the Sinc numerical method
Sinc数值方法的最新进展
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Sugihara;T.Matsuo
- 通讯作者:T.Matsuo
Numerical conformal mapping by the charge simulation method and their application to potential flow problems (in Japanese)
电荷模拟方法的数值共形映射及其在势流问题中的应用(日语)
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Amano;K.;Tamai;M.;Okano;D.;Ogata;H.;Sugihara;M.
- 通讯作者:M.
Yamamoto's principle and its applications to precise finite element error analysis
山本原理及其在精密有限元误差分析中的应用
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Tsuchiya;T.;Yoshida;K.;Ishioka;S.
- 通讯作者:S.
Finite element approximation of H-surfaces,
H 表面的有限元近似,
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Matsuzawa;Y.;Suzuki;T.;Tsuchiya;T.
- 通讯作者:T.
Yanagida, E., Yotsutani, S.: "Recent topics on nonlinear partial differential equations : strucure of radial solutions for semilinear elliptic equations"Amer.Math.Soc.Transl.Series 2. 211. 121-137 (2003)
Yanagida, E., Yotsutani, S.:“非线性偏微分方程的最新主题:半线性椭圆方程径向解的结构”Amer.Math.Soc.Transl.Series 2. 211. 121-137 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMANO Kaname其他文献
AMANO Kaname的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMANO Kaname', 18)}}的其他基金
Research on the Charge Simulation Method and the Numerical Conformal Mapping
电荷模拟方法与数值共形映射研究
- 批准号:
19340024 - 财政年份:2007
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
General Research on the Charge Simulation Method and the Numerical Conformal Mapping
电荷模拟方法与数值共角映射的综合研究
- 批准号:
12440029 - 财政年份:2000
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Conformal Mapping and Its Application to the Two-Dimensional Potential Flow Analysis
数值共形映射及其在二维势流分析中的应用
- 批准号:
09440081 - 财政年份:1997
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Some Questions in Inverse Problems and the Mixed Problem for Laplace's Equation in Lipschitz Domains
Lipschitz域拉普拉斯方程反问题和混合问题中的几个问题
- 批准号:
0099921 - 财政年份:2001
- 资助金额:
$ 5.06万 - 项目类别:
Standard Grant
The Schwarz function in free or moving boundary problems for Laplace's equation
拉普拉斯方程的自由或移动边界问题中的 Schwarz 函数
- 批准号:
109698-1992 - 财政年份:1994
- 资助金额:
$ 5.06万 - 项目类别:
Discovery Grants Program - Individual
The Schwarz function in free or moving boundary problems for Laplace's equation
拉普拉斯方程的自由或移动边界问题中的 Schwarz 函数
- 批准号:
109698-1992 - 财政年份:1993
- 资助金额:
$ 5.06万 - 项目类别:
Discovery Grants Program - Individual
The Schwarz function in free or moving boundary problems for Laplace's equation
拉普拉斯方程的自由或移动边界问题中的 Schwarz 函数
- 批准号:
109698-1992 - 财政年份:1992
- 资助金额:
$ 5.06万 - 项目类别:
Discovery Grants Program - Individual
An Application-Specific Computer for Laplace's Equation
拉普拉斯方程的专用计算机
- 批准号:
9061185 - 财政年份:1991
- 资助金额:
$ 5.06万 - 项目类别:
Standard Grant
A Software Tool for Analytical Solutions of Laplace's Equation
拉普拉斯方程解析解的软件工具
- 批准号:
9060714 - 财政年份:1991
- 资助金额:
$ 5.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Integral Equation Methods for the Solution of Laplace's Equation
数学科学:解拉普拉斯方程的积分方程方法
- 批准号:
8403131 - 财政年份:1984
- 资助金额:
$ 5.06万 - 项目类别:
Standard Grant














{{item.name}}会员




