NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis

NSF-DFG Echem:电化学增强低温催化氨合成

基本信息

项目摘要

As an alternative to centralized Haber-Bosch, small-scale distributed ammonia synthesis has great value. Avoiding very high pressures reduces high capital cost, and electrochemical promotion potentially enables carbon-free ammonia. Foregoing research was based on polarized protonic-ceramic electrochemical cells, with either steam electrolysis or methane reforming on the anode, a proton-conducting ceramic membrane, and ammonia synthesis on the cathode. Because equilibrium ammonia synthesis rates decrease greatly as temperature increases, low-temperature (e.g., T< 450 °C) catalysis is needed. However, even with the best catalysts, synthesis is greatly reduced by kinetic limitations below about 500 °C. Protons likely play a significant role in catalysis. Practical protonic-ceramic electrochemical cells usually operate between 500 and 700 °C. Electrochemical cells do produce ammonia, but at low rates. The proposed approach here is different. We will study the direct electrochemical activation of a novel catalyst support to increase synthesis rates greatly at low temperatures where the process is kinetically limited by N2 activation. This objective of the joint project of Karlsruhe Institute of Technology (KIT) and Colorado School of Mines (CSM) is to develop and demonstrate electrochemical enhancement that enables low-temperature and low-pressure ammonia synthesis. Nanophase Ru is dispersed on a proton-conducting BCZY support. Directly polarizing the catalyst structure with an electric field decreases the kinetically limited barrier for N2 activation. Although the proposed research is scientifically fundamental, it has great technology potential for cost-effective distributed production of ammonia. The research focuses on postulating, modeling, and validating proposed chemical behaviors. The electrical field is expected to reduce rate-limiting N2 dissociation barriers via two synergistic mechanisms:1. Electrical fields affect the proton-conducting BCZY support, enabling H2 dissociation to form protons that can activate gas-phase N2, directly forming desired surface adsorbates such as NH(BCZY).2. Fields in the range of 0.1 to 1.0 V/Å on dispersed nano-Ru also reduce the nitrogen activation barrier. Based on our validated reaction mechanisms for Ba-promoted Ru/YSZ, simulations show that reducing the N2 dissociation energy by 10 kJ mol-1 will increase the ammonia formation rate by an order of magnitude.Achieving the proposed objectives relies on the combined, complementary, and unique expertise of the partners in the context of heterogeneous catalysis, materials synthesis, characterization and process demonstration (KIT) and physically based modeling of the electrochemistry, charged-defect transport, and catalysis (CSM).
小规模分布式氨合成作为集中式哈伯-博世的替代方案,具有很大的应用价值。避免非常高的压力降低了高资本成本,并且电化学促进可能实现无碳氨。前述研究是基于极化质子陶瓷电化学电池,在阳极上具有蒸汽电解或甲烷重整,质子传导陶瓷膜,并且在阴极上具有氨合成。因为平衡氨合成速率随着温度升高而大大降低,所以低温(例如,T< 450 °C)催化。然而,即使使用最好的催化剂,低于约500 °C的动力学限制也大大降低了合成。质子可能在催化中起重要作用。实际的质子陶瓷电化学电池通常在500 ° C至700 °C之间操作。电化学电池确实产生氨,但速率很低。这里提出的方法是不同的。我们将研究一种新型催化剂载体的直接电化学活化,以在低温下大大提高合成速率,其中该过程在动力学上受到N2活化的限制。卡尔斯鲁厄理工学院(KIT)和科罗拉多矿业学院(CSM)的联合项目的目标是开发和展示能够实现低温和低压氨合成的电化学增强。纳米相Ru分散在质子传导BCZY载体上。 用电场直接极化催化剂结构降低了N2活化的动力学限制势垒。虽然拟议的研究是科学基础,它具有巨大的技术潜力,具有成本效益的分布式生产氨。该研究的重点是假设,建模和验证拟议的化学行为。 预期电场通过两种协同机制降低限速N2解离势垒:1.电场影响质子传导BCZY载体,使得H2解离以形成可以活化气相N2的质子,直接形成所需的表面吸附物,例如NH(BCZY)。在0.1至1.0 V/cm 2范围内的场对分散的纳米Ru也降低了氮活化势垒。基于我们验证的Ba促进的Ru/YSZ反应机理,模拟表明,将N2解离能降低10 kJ mol-1将使氨的生成速率提高一个数量级。实现所提出的目标依赖于合作伙伴在多相催化,材料合成,表征和工艺演示(KIT)和基于物理的电化学、带电缺陷传输和催化(CSM)建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Olaf Deutschmann其他文献

Professor Dr. Olaf Deutschmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Olaf Deutschmann', 18)}}的其他基金

Homogenous gas-phase reactions in exhaust-gas tail pipes of internal combustion engines
内燃机废气尾管中的均相气相反应
  • 批准号:
    391765816
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sorption-Enhanced CO2 Hydrogenation to Methanol under Dynamic Reaction Conditions
动态反应条件下吸附强化 CO2 加氢制甲醇
  • 批准号:
    406474220
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mathematical optimization of operating conditions in chemical energy conversion in piston engines
活塞发动机化学能转化操作条件的数学优化
  • 批准号:
    239921130
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Chemische Gasphaseninfiltration von orientierten Kohlenstoffnanorohrschichten: Grundlagen, Pyrokohlenstoffabscheidung, Materialeigenschaften
定向碳纳米管层的化学气相渗透:基础知识、热解碳沉积、材料特性
  • 批准号:
    61519787
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kohlenstofffaserverstärkter Kohlenstoff durch chemische Gasphaseninfiltration: Experimentelle Analyse und numerische Simulation des Herstellungsprozesses
化学气相渗透碳纤维增强碳:制造过程的实验分析和数值模拟
  • 批准号:
    58345363
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reaktionsmechanismen der partiellen Oxidation und autothermen Reformierung von höheren Aliphaten
高级脂肪族部分氧化与自热重整反应机理
  • 批准号:
    20375365
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Katalytische partielle Oxidation niederer Alkane bei kurzen Aufenthaltszeiten
短停留时间催化部分氧化低级烷烃
  • 批准号:
    5419871
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
  • 批准号:
    2055245
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
  • 批准号:
    2055689
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
  • 批准号:
    2139971
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
  • 批准号:
    2140038
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2140211
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了