NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis

NSF-DFG Echem:电化学增强低温催化氨合成

基本信息

项目摘要

As an alternative to centralized Haber-Bosch, small-scale distributed ammonia synthesis has great value. Avoiding very high pressures reduces high capital cost, and electrochemical promotion potentially enables carbon-free ammonia. Foregoing research was based on polarized protonic-ceramic electrochemical cells, with either steam electrolysis or methane reforming on the anode, a proton-conducting ceramic membrane, and ammonia synthesis on the cathode. Because equilibrium ammonia synthesis rates decrease greatly as temperature increases, low-temperature (e.g., T< 450 °C) catalysis is needed. However, even with the best catalysts, synthesis is greatly reduced by kinetic limitations below about 500 °C. Protons likely play a significant role in catalysis. Practical protonic-ceramic electrochemical cells usually operate between 500 and 700 °C. Electrochemical cells do produce ammonia, but at low rates. The proposed approach here is different. We will study the direct electrochemical activation of a novel catalyst support to increase synthesis rates greatly at low temperatures where the process is kinetically limited by N2 activation. This objective of the joint project of Karlsruhe Institute of Technology (KIT) and Colorado School of Mines (CSM) is to develop and demonstrate electrochemical enhancement that enables low-temperature and low-pressure ammonia synthesis. Nanophase Ru is dispersed on a proton-conducting BCZY support. Directly polarizing the catalyst structure with an electric field decreases the kinetically limited barrier for N2 activation. Although the proposed research is scientifically fundamental, it has great technology potential for cost-effective distributed production of ammonia. The research focuses on postulating, modeling, and validating proposed chemical behaviors. The electrical field is expected to reduce rate-limiting N2 dissociation barriers via two synergistic mechanisms:1. Electrical fields affect the proton-conducting BCZY support, enabling H2 dissociation to form protons that can activate gas-phase N2, directly forming desired surface adsorbates such as NH(BCZY).2. Fields in the range of 0.1 to 1.0 V/Å on dispersed nano-Ru also reduce the nitrogen activation barrier. Based on our validated reaction mechanisms for Ba-promoted Ru/YSZ, simulations show that reducing the N2 dissociation energy by 10 kJ mol-1 will increase the ammonia formation rate by an order of magnitude.Achieving the proposed objectives relies on the combined, complementary, and unique expertise of the partners in the context of heterogeneous catalysis, materials synthesis, characterization and process demonstration (KIT) and physically based modeling of the electrochemistry, charged-defect transport, and catalysis (CSM).
作为集中式Haber-Bosch的替代方案,小规模分布的氨合成具有很高的价值。避免极高的压力降低了高资本成本,电化学促进可能会促进无碳氨。上述研究基于极化质子陶瓷电化学细胞,阳极上的蒸汽电解或甲烷重整,质子导电的陶瓷膜和阴极上的氨合成。由于氨合成速率随着温度的升高而降低,因此需要低温(例如,t <450°C)催化。但是,即使使用最佳催化剂,动力学限制大大降低了约500°C。质子可能在催化中起重要作用。实用的质子陶瓷电化学细胞通常在500至700°C之间工作。电化学细胞确实会产生氨,但速率低。这里提出的方法是不同的。我们将研究新型催化剂支持的直接电化学激活,以提高合成速率,在该过程受到N2激活的限制的低温下。 Karlsruhe技术研究所(KIT)和科罗拉多州矿业学院(CSM)的联合项目的这一目标是开发和展示电化学增强功能,从而实现低温和低压氨合成。纳米相RU分散在质子导向的BCZY支持上。用电场直接使催化剂结构偏振会降低动力学上有限的N2激活屏障。尽管拟议的研究在科学上是基本的,但它具有巨大的技术潜力,可用于具有成本效益的氨分布生产。该研究的重点是假设,建模和验证提议的化学行为。预计电场将通过两种协同机制降低限制速率的N2解离屏障:1。电场影响质子导向的BCZY支持,使H2解离以形成可以激活气相N2的质子,直接形成所需的表面吸附剂,例如NH(BCZY).2。分散的纳米ru的0.1至1.0 v/Å的范围也减少了氮激活屏障。 Based on our validated reaction mechanisms for Ba-promoted Ru/YSZ, simulations show that reducing the N2 dissociation energy by 10 kJ mol-1 will increase the ammonia formation rate by an order of magnitude.Achieving the proposed objectives relies on the combined, complete, and unique expertise of the partners in the context of heterogeneous catalysis, materials synthesis, characterization and process demonstration (KIT) and physically based modeling of电化学,收费缺失的运输和催化剂(CSM)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Olaf Deutschmann其他文献

Professor Dr. Olaf Deutschmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Olaf Deutschmann', 18)}}的其他基金

Homogenous gas-phase reactions in exhaust-gas tail pipes of internal combustion engines
内燃机废气尾管中的均相气相反应
  • 批准号:
    391765816
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sorption-Enhanced CO2 Hydrogenation to Methanol under Dynamic Reaction Conditions
动态反应条件下吸附强化 CO2 加氢制甲醇
  • 批准号:
    406474220
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mathematical optimization of operating conditions in chemical energy conversion in piston engines
活塞发动机化学能转化操作条件的数学优化
  • 批准号:
    239921130
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Chemische Gasphaseninfiltration von orientierten Kohlenstoffnanorohrschichten: Grundlagen, Pyrokohlenstoffabscheidung, Materialeigenschaften
定向碳纳米管层的化学气相渗透:基础知识、热解碳沉积、材料特性
  • 批准号:
    61519787
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kohlenstofffaserverstärkter Kohlenstoff durch chemische Gasphaseninfiltration: Experimentelle Analyse und numerische Simulation des Herstellungsprozesses
化学气相渗透碳纤维增强碳:制造过程的实验分析和数值模拟
  • 批准号:
    58345363
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reaktionsmechanismen der partiellen Oxidation und autothermen Reformierung von höheren Aliphaten
高级脂肪族部分氧化与自热重整反应机理
  • 批准号:
    20375365
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Katalytische partielle Oxidation niederer Alkane bei kurzen Aufenthaltszeiten
短停留时间催化部分氧化低级烷烃
  • 批准号:
    5419871
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
  • 批准号:
    61107087
  • 批准年份:
    2011
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
  • 批准号:
    60878063
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
  • 批准号:
    60577006
  • 批准年份:
    2005
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了