NSF-DFG Echem: Future Fuels and Chemicals from Electrocatalytic Upgrading: Advancing Kinetic Understanding using Operando Spectroscopic Approaches and Quantum Chemicial modeling

NSF-DFG Echem:电催化升级的未来燃料和化学品:使用操作光谱方法和量子化学建模促进动力学理解

基本信息

项目摘要

This project’s focus is the electrocatalytic hydrogenation and deoxygenation (ECH) of fast pyrolysis (Py) bio-oils for the purpose of making chemical and hydrocarbon fuel precursors. The U.S.-German collaboration is between Prof.’s Christopher Saffron, James “Ned” Jackson, and Scott Calabrese Barton at Michigan State University (MSU) in East Lansing, Michigan and Prof. Uwe Schröder at the Technische Universität Braunschweig (TUB) in Lower Saxony, Germany. Relevant activities include organic electrosynthesis, catalyst evaluation by in operando techniques, quantum chemical modeling, reaction engineering and reactor design leading to fundamental knowledge supporting system scale-up. With further development of this technology, making “finished” hydrocarbon fuels is possible, leading towards rural production of electrobiofuels. Electrobiofuels are fuels that couple the energy from two renewable routes: biomass and alternative electricity (e.g. wind and solar). Electrobiofuels are needed to reverse the negative impacts of climate change, as only systems like Py-ECH are designed to efficiently cycle the carbon in the 1.3 billion tons of plant biomass that could be annually harvested in the U.S. Intellectual Merit: Fast pyrolysis uses heat without oxygen to convert biomass into liquid bio-oil, solid biochar, and combustible gases. However, bio-oil’s corrosiveness and reactive instability limit its use in conventional fuel and chemical processes, so upgrading is needed to overcome these hurdles. ECH of bio-oil is a key upgrading technique to reduce its reactivity and corrosiveness and improve its compatibility with conventional manufacturing infrastructure. Previous research shows that carbon-carbon and carbon-oxygen double bonds, as well as de-localized pi bonds, are saturated during ECH. Further, these reactions occur under very mild reaction temperatures and pressures when compared to hydroprocessing. In this collaborative project between Michigan State University and Technische Universität Braunschweig, an advanced understanding of ECH reaction mechanisms will be gained through organic molecule electrocatalysis trials, in operando measurements, quantum chemical modeling, and kinetic model development. The new knowledge that is gained will be lead to improved reactor design and better de-risking of scale up for eventual commercialization of ECH as a bio-oil upgrading strategy.
该项目的重点是快速热解(Py)生物油的电催化加氢和脱氧(ECH),用于制造化学和碳氢化合物燃料前体。此次美德合作是由密歇根州东兰辛市密歇根州立大学(MSU)的Christopher Saffron、James“Ned”Jackson和Scott Calabrese Barton教授与德国下萨克森州Technische Universität Braunschweig (TUB)的Uwe Schröder教授共同完成的。相关活动包括有机电合成、催化剂评价、量子化学建模、反应工程和反应器设计,这些都是支持系统规模扩大的基础知识。随着这项技术的进一步发展,制造“成品”碳氢化合物燃料成为可能,从而导致农村生产电生物燃料。电生物燃料是将两种可再生能源结合起来的燃料:生物质能和替代电力(如风能和太阳能)。为了扭转气候变化的负面影响,需要电生物燃料,因为只有像Py-ECH这样的系统才能有效地循环美国每年可收获的13亿吨植物生物质中的碳。知识优点:快速热解利用热量无氧将生物质转化为液体生物油、固体生物炭和可燃气体。然而,生物油的腐蚀性和反应不稳定性限制了其在传统燃料和化学工艺中的应用,因此需要对其进行升级以克服这些障碍。生物油ECH是降低生物油反应性和腐蚀性、提高生物油与传统生产设施相容性的关键技术。先前的研究表明,碳-碳和碳-氧双键以及去定域pi键在ECH过程中是饱和的。此外,与加氢加工相比,这些反应发生在非常温和的反应温度和压力下。在密歇根州立大学和Technische Universität Braunschweig之间的这个合作项目中,将通过有机分子电催化试验、operando测量、量子化学建模和动力学模型开发来深入了解ECH反应机制。获得的新知识将导致改进反应器设计,并更好地降低规模风险,最终将ECH作为生物油升级战略的商业化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Uwe Schröder其他文献

Professor Dr. Uwe Schröder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Uwe Schröder', 18)}}的其他基金

Electrocatalysis in Microbial Fuel Cells: Low Cost Anode Electrocatalysts for Microbial Fuel Cells (Elektrokatalyse in mikrobiellen Brennstoffzellen)
微生物燃料电池中的电催化:微生物燃料电池的低成本阳极电催化剂
  • 批准号:
    58180736
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Elektroden als Schnittstelle zwischen Mikrobiologie und Elektrochemie
电极作为微生物学和电化学之间的接口
  • 批准号:
    38089215
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Grundsatzuntersuchungen zur mikrobiellen Erzeugung von Elektrizität aus Biomasse
微生物生物质发电的基础研究
  • 批准号:
    5440711
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
  • 批准号:
    2055245
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
  • 批准号:
    2055689
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
  • 批准号:
    2139971
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
  • 批准号:
    2140038
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Future Fuels and Chemicals from Electrocatalytic Upgrading: Advancing Kinetic Understanding using Operando Spectroscopic Approaches and Quantum Chemical Modeling
NSF-DFG Echem:电催化升级的未来燃料和化学品:使用操作光谱方法和量子化学模型促进动力学理解
  • 批准号:
    2055068
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了