Etale endomorphisms of algebraic varieties
代数簇的 Etale 自同态
基本信息
- 批准号:13440009
- 负责人:
- 金额:$ 6.53万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.Head investingator, in collaboration with K.Masuda, considered etale endomorphisms of algebraic surfacees admitting G_m-actions and showed that they are automorphisms almost in all cases. On the other hand, he considered a classification of algebraic surfacees with finite group actions arid showed that we can make parallel arguments with the case without group actions but need more subtle arguments. Furthermore, he with K. Masuda considered Q-homology planes admitting two algebraically independent G_a-actions and showed that their universal coverings are hypersurfaces defined by xy=z^2-1.2.A.Fujiki considered self-dual metrics for a(differentiable) connected sum mP^2 of the projective plane and associated twister spaces(3-dimensional complex manifolds) and observed maximal value of algebraic dimension which twister spaces can take for various metrics. He obtained many results on the related topics.3.T.Hibi considered the Groebner basis of the toric ideal associated with the normalized volumes of configurations related with root systems and complete bipartite graphs. He obtained many results on computational algebras.4.S.Usui, in collaboration with K.Kato, realized a so-called Griffith's dream by considering the toroidal compactification of a symmetric space Γ\D, when D has polarized Hodge structures.5.Y.Shinohara considered the generalized pretzel links and computed the associated Jones polynomials.
1.与K.增田合作,研究了容许G_m作用的代数曲面的自同态,并证明了它们几乎在所有情况下都是自同构.另一方面,他认为一个分类的代数surfacees有限组行动和表明,我们可以平行的论点的情况下,没有组行动,但需要更微妙的论点。他与K。增田考虑了允许两个代数独立的G_a-作用的Q-同调平面,并证明了它们的泛覆盖是由xy=z^2- 1.2定义的超曲面。藤木考虑了射影平面和相关的twister空间(三维复流形)的(可微)连通和mP^2的自对偶度量,并观察到twister空间在各种度量下所能取的代数维数的最大值。他获得了许多结果的相关主题。3.T.Hibi认为Groebner基础的环面理想与正规化卷的配置有关的根系和完全二分图。他在计算代数方面获得了许多结果。4.S.Shohari与K.Kato合作,通过考虑对称空间Γ\D的环面紧化实现了所谓的Griffith梦想,当D具有极化Hodge结构时。
项目成果
期刊论文数量(75)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
増田佳代: "The additive group actions on Q-homology planes"Annales de I'Institut Fourier (Grenoble). 53. 429-464 (2003)
Kayo Masuda:“Q 同调平面上的加法群作用”Annales de IInstitut Fourier (格勒诺布尔) 53. 429-464 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
今野一宏: "On the quadric hull of a canonical surface"Algebraic Geometry, A Volume in Memory of Paolo Francia, M.C.Beltrametti et al.eds.. 217-235 (2002)
Kazuhiro Konno:“关于正则曲面的二次壳”代数几何,纪念 Paolo Francia 的卷,M.C.Beltrametti 等编辑.. 217-235 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kayo Masuda: "Etale endomorphisms of algebraic Surfacees with G_m-action"Mathematische Annalen. 319. 493-516 (2001)
Kayo Masuda:“代数曲面的 Etale 自同态与 G_m 作用”数学年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
並河良典: "Stratified local moduli of Calabi-Yau threefolds"Topology. 41. 1219-1237 (2002)
Yoshinori Namikawa:“卡拉比-丘三重的分层局部模量”拓扑学 41. 1219-1237 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
並河良典: "Projectivity criterion of Moishezon spaces and density of projective symplectic varieties"Intern.J.Math.. 13. 125-135 (2002)
Yoshinori Namikawa:“Moishezon 空间的射影准则和射影辛簇的密度” Intern.J.Math.. 13. 125-135 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYANISHI Masayoshi其他文献
MIYANISHI Masayoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYANISHI Masayoshi', 18)}}的其他基金
Structure of algebraic varieties and unipotent geometry
代数簇的结构和单能几何
- 批准号:
21540055 - 财政年份:2009
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unipotent dimension and structures of algebraic varieties
代数簇的单能维数和结构
- 批准号:
18540058 - 财政年份:2006
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rational Curves on Algebraic Varieties
代数簇上的有理曲线
- 批准号:
09440012 - 财政年份:1997
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric Study of Algebraic Systems
代数系统的几何研究
- 批准号:
07454006 - 财政年份:1995
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebraic Theory of Manifolds
流形代数理论
- 批准号:
01302001 - 财政年份:1989
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Problems surrounding manifolds
围绕歧管的问题
- 批准号:
63460004 - 财政年份:1988
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




