Geometric Study of Algebraic Systems

代数系统的几何研究

基本信息

  • 批准号:
    07454006
  • 负责人:
  • 金额:
    $ 3.97万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

1.The head investigator, Masayoshi Miyanishi, gave new proofs to the Abhyankar-Moh Theorem and the Lin-Zaidenberg Theorem which are based on the classification theory of open algebraic surfaces. He considered the embeddings of affine curves with one-place points at infinity into the affine plane and classified such embeddings of possibly minimal degree when the genus is low. He, furthermore, simplified a proof in P.Roberts' counterexample to the fourteenth problem of Hilbert.2.Akira Fujiki found a natural partial compactification of hyper kahler manifolds as quaternionic manifolds which are obtained as hyper Kahler quotinet spaces of certain kinds. He also investigated the variation via moment maps of Kahler quotient spaces by making use of equivariant cohomology groups.3.Sanpei Usui proved that one can recover vanishing cycles by using log geometry. As applications of this result, he clarified the Z-structure of the variation of Hodge structures and the description of monodromies.4.Jun Murakami constructed a new invariant for three-dimensional manifolds which is based on the Kontsevich invariant for the knots and studied its properties. He constructed a topological quantum theory by making use of this invariant, and a family of mapping groups of surfaces as its application.5.Kazuhiro Konno defined a new index for surfaces with non-hyperelliptic pencils and found some general method to investigate the lower bound of the slopes of surfaces. He also an index, called the Horikawa index, for degenerate fibers.6.Hiroyuki Yamane obtained a new technique to calculate the index of the BMW algebras which are defined in a paper of Rham.
1.首席研究员Masayoshi Miyanishi在开放代数曲面分类理论的基础上,对Abhyankar-Moh定理和Lin-Zaidenberg定理进行了新的证明。他考虑了无穷远处有单点的仿射曲线在仿射平面上的嵌入,并对这类嵌入在属低时可能最小度的嵌入进行了分类。他进一步简化了P.Roberts对hilbert第十四问题的反例中的一个证明。藤木明(Akira Fujiki)发现了超kahler流形作为四元数流形的自然偏紧化,这种四元数流形是由某些类型的超kahler引用空间得到的。他还利用等变上同调群研究了Kahler商空间的矩映射的变异。臼井三培证明了利用对数几何可以恢复消失的循环。作为这一结果的应用,他阐明了Hodge结构变异的z型结构和单态的描述。Jun Murakami在结的Kontsevich不变量的基础上构造了三维流形的不变量,并研究了它的性质。他利用这一不变量构造了拓扑量子理论,并将一系列曲面映射群作为其应用。Kazuhiro Konno为带有非超椭圆铅笔的曲面定义了一个新的指标,并找到了一些研究曲面斜率下界的一般方法。他还为简并纤维提出了一个指数,称为堀川指数。Hiroyuki Yamane在Rham的一篇论文中获得了一种计算BMW代数指标的新方法。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Kojima: "On P. Roberts' counterexample to the fourteenth problem of Hilbert" Journal of pure and applied algebra. (to appear). (1997)
H. Kojima:“论 P. Roberts 对希尔伯特第十四个问题的反例”纯粹与应用代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.V.Gurjar: "On contractible curves in the complex affine plane" Tohoku Mathematical Journal. 48. 459-469 (1996)
R.V.Gurjar:“论复仿射平面中的可收缩曲线”东北数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Usui: "Recovery of vanishing cycles by log geometry" Proc.Internat.Conference on "Commutative Algebra and Algebraic Geometry", Hanoi 1996, Lecture Notes in Mathematics.
S.Usui:“通过对数几何恢复消失的循环”Proc.Internat.Conference on“交换代数和代数几何”,河内 1996 年,数学讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Thang Tu Quoc: "Kontsevich's integral for the Kauffman polynomial" Nagoya Mathematical Journal. 142. 39-65 (1996)
Thang Tu Quoc:“考夫曼多项式的 Kontsevich 积分”名古屋数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R. V. Gurjar: "On contractible curves in the complex affine plane" Tohoku Mathematical Journal. 48. 459-469 (1996)
R. V. Gurjar:“论复仿射平面中的可收缩曲线”东北数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYANISHI Masayoshi其他文献

MIYANISHI Masayoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYANISHI Masayoshi', 18)}}的其他基金

Structure of algebraic varieties and unipotent geometry
代数簇的结构和单能几何
  • 批准号:
    21540055
  • 财政年份:
    2009
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unipotent dimension and structures of algebraic varieties
代数簇的单能维数和结构
  • 批准号:
    18540058
  • 财政年份:
    2006
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Etale endomorphisms of algebraic varieties
代数簇的 Etale 自同态
  • 批准号:
    13440009
  • 财政年份:
    2001
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rational Curves on Algebraic Varieties
代数簇上的有理曲线
  • 批准号:
    09440012
  • 财政年份:
    1997
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algebraic Theory of Manifolds
流形代数理论
  • 批准号:
    01302001
  • 财政年份:
    1989
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Problems surrounding manifolds
围绕歧管的问题
  • 批准号:
    63460004
  • 财政年份:
    1988
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Research on open algebraic surfaces and normal algebraic surfaces
开代数面和正规代数面的研究
  • 批准号:
    17K05198
  • 财政年份:
    2017
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the structure of open algebraic surfaces and normal algebraic surfaces of logarithmic Kodaira dimension one or less
了解对数小平一维或以下的开代数面和正规代数面的结构
  • 批准号:
    26400042
  • 财政年份:
    2014
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Branched covers and topology of open algebraic surfaces
开代数曲面的分支覆盖和拓扑
  • 批准号:
    22540052
  • 财政年份:
    2010
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of open algebraic surfaces and its applications
开代数曲面的分类及其应用
  • 批准号:
    20740006
  • 财政年份:
    2008
  • 资助金额:
    $ 3.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了