Commutative ring theory and singularity theory

交换环理论和奇点理论

基本信息

  • 批准号:
    13440015
  • 负责人:
  • 金额:
    $ 4.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

The results are mainly concerning the followings 3 themes1.Multiplier ideals ;J.Lipman and K.Watanabe proved that every integrally closed ideal in 2 dimensional regular local rings is a multiplier ideal.N.Hara and K.Yoshida defined a generalization of "tight closures" in characteristic p>0 and by using that concept, they Succeeded to calculate multiplier ideals by purely algebraic (by commutative ring theory) method.S.Takagi and K.Watanabe established the notion of "F-pure thresholds", which corresponds to the notion of lc(=log canonical) threshold in characteristic 0, used in algebraic geometry. This concept has many interesting features in both singularity theory and commutative ring theory.2.Hilbert-Kunz multiplicity ;Hilbert-Kunz multiplicity is a kind of multiplicity defined for rings of positive characteristics. Watanabe and Yoshida proved before that a ring is regular if and only if the HK multiplicity of the ring is 1. This time we determined the rings whose HK multiplicity is smallest among non-regular rings in dimension 2 and 3.
结果主要涉及以下3个方面:1.乘子理想; J.Lipman和K.Watanabe证明了2维正则局部环中的每一个整闭理想都是乘子理想,N.Hara和K.Yoshida定义了特征p>0的“紧闭包”的推广,并利用这一概念,他们成功地计算乘子理想的纯代数S.Takagi和K.Watanabe建立了“F-纯阈值”的概念,其对应于在代数几何中使用的特征0中的LC(=对数正则)阈值的概念。这个概念在奇点理论和交换环理论中都有许多有趣的特征。2.希尔伯特-昆兹重数:希尔伯特-昆兹重数是定义在正特征环上的一种重数。Watanabe和Yoshida证明了环是正则的当且仅当环的HK重数是1。这一次我们确定了在2维和3维的非正则环中HK重数最小的环。

项目成果

期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When does the subadditivity theorem for multiplier ideals hold?
乘数理想的次可加性定理何时成立?
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.-i.Watanabe;S.Takagi
  • 通讯作者:
    S.Takagi
F-regular and F-pure rings vs. log terminal and log canonical singularities
  • DOI:
    10.1090/s1056-3911-01-00306-x
  • 发表时间:
    2000-02
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Nobuo Hara;Kei-ichi Watanabe
  • 通讯作者:
    Nobuo Hara;Kei-ichi Watanabe
A characterization of semi-quasihomogeneous functions in terms of Milnor numbers
用 Milnor 数表示半拟齐次函数的特征
N.Hara, K.Watanabe: "F-regular and F-pure rings vs. log terminal and log canonical singularities"J. of Algebraic Geometry. 11. 363-392 (2002)
N.Hara,K.Watanabe:“F-正则环和 F-纯环与对数终端和对数规范奇点”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A characterization of semi-quasihomogeneous function in terms of the Milnor number
半拟齐次函数的 Milnor 数表征
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Keiichi其他文献

WATANABE Keiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Keiichi', 18)}}的其他基金

A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
  • 批准号:
    18K01184
  • 财政年份:
    2018
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
  • 批准号:
    15K16907
  • 财政年份:
    2015
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
  • 批准号:
    26400053
  • 财政年份:
    2014
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
  • 批准号:
    22530348
  • 财政年份:
    2010
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
  • 批准号:
    21720328
  • 财政年份:
    2009
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
  • 批准号:
    17540043
  • 财政年份:
    2005
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
  • 批准号:
    16530231
  • 财政年份:
    2004
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
  • 批准号:
    15380074
  • 财政年份:
    2003
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
  • 批准号:
    10640042
  • 财政年份:
    1998
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
  • 批准号:
    09044335
  • 财政年份:
    1997
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了