Singurality Theory and Frobenius Morphism

奇点理论和弗罗贝尼乌斯态射

基本信息

  • 批准号:
    17540043
  • 负责人:
  • 金额:
    $ 2.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Frobenius endomorphism hi characteristic p > 0 is a very powerful tool in commutative ring theory as well as singularity theory or algebraic geometry iover a field of characteristic 0 via reduction mod p.We applied the Frobenius endomorphism to various problems in commutative algebra and singularity theory. Inparticular, we showed the followings ;1. F-thresholds ; F-threshold is defined in a Noetherian ring of characteristic p>0 to a pair (I,J) of two ideals of A.This notion was originally introduced to describe multiplier ideals and jumping numbers in a regular local ring. But in our research, it turned out that this notion is closely related to tight closures and integral closures and also we have a nice conjecture concerning F-threshold and multiplicity of a parameter ideal.2. Multi-graded rings, rational singularity and F-rational rings ;The notion of multi-graded rings and their diagonal algebras is a very interesting object and very useful in making many interesting examples. In a joint paper with A Singh and E. Sato, K. Kurano and K. Watanabe made a new example with discrete divisor class group whose local cohomology modules shows very interesting feature. Also we showed a criterion for diagonal subalgebras of multi-graded hypersurfaces to be f-rational or F-regular in terms of the degree.3. Totally reflexive modules ;In the theory of totally reflexive modules, examples of non-trivial totally reflexive modules are very few. Watanabe and R. Takahashi constructed a family of non-trivial totally reflexive modules using geometry of curves of genus greater than 1. This is the first case that algebraic geometry is used in this theory.
特征p > 0的Frobenius自同态是交换环理论、奇点理论或特征为0的域上代数几何中通过模p约化的一个非常有力的工具。具体而言,我们展示了以下内容:1。F-阈值;定义了特征p>0的Noether环中A的两个理想对(I,J)的F-阈值。这个概念最初是用来描述正则局部环中的乘子理想和跳跃数的。但在我们的研究中,发现这个概念与紧闭包和积分闭包密切相关,并且我们对参数理想的F-阈值和重数有一个很好的猜想.多重分次环、有理奇异性和F-有理环;多重分次环及其对角代数的概念是一个非常有趣的对象,在制作许多有趣的例子时非常有用。在与A Singh和E.佐藤角Kurano和K. Watanabe给出了一个新的例子,离散除子群的局部上同调模表现出非常有趣的特征。给出了多重分次超曲面的对角子代数是f-有理或F-正则的一个度判据.全自反模:在全自反模理论中,非平凡全自反模的例子很少。Watanabe和R. Takahashi利用亏格大于1的曲线几何构造了一类非平凡的全自反模。这是第一个情况下,代数几何是在这个理论中使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Totally reflexive modules constructed from smooth projective curves of genus g ≥ 2
  • DOI:
    10.1007/s00013-007-2004-y
  • 发表时间:
    2006-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Ryo Takahashi;Kei-ichi Watanabe
  • 通讯作者:
    Ryo Takahashi;Kei-ichi Watanabe
Formulas for multiplier ideals on singular varieties
奇异品种乘数理想公式
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunsuke;Takagi
  • 通讯作者:
    Takagi
Another proof of theorems of De Cocini and Procesi,
De Cocini 和 Procesi 定理的另一个证明,
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Noh;K.Watanabe;K.Kurano;S.Takagi;N.Hara;M.Hashimoto
  • 通讯作者:
    M.Hashimoto
A characteristic p analog of multiplier ideals and applications.
乘法器理想和应用的特征 p 模拟。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B.Gordon;M.Hanamura;J.P.Murre;N.Hara
  • 通讯作者:
    N.Hara
F-thresholds-application to lc thresholds and a conjectur on multiplicity
F 阈值在 lc 阈值中的应用和多重性猜想
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.;Watanabe;K. Watanabe
  • 通讯作者:
    K. Watanabe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Keiichi其他文献

WATANABE Keiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Keiichi', 18)}}的其他基金

A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
  • 批准号:
    18K01184
  • 财政年份:
    2018
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
  • 批准号:
    15K16907
  • 财政年份:
    2015
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
  • 批准号:
    26400053
  • 财政年份:
    2014
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
  • 批准号:
    22530348
  • 财政年份:
    2010
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
  • 批准号:
    21720328
  • 财政年份:
    2009
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
  • 批准号:
    16530231
  • 财政年份:
    2004
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
  • 批准号:
    15380074
  • 财政年份:
    2003
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Commutative ring theory and singularity theory
交换环理论和奇点理论
  • 批准号:
    13440015
  • 财政年份:
    2001
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
  • 批准号:
    10640042
  • 财政年份:
    1998
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
  • 批准号:
    09044335
  • 财政年份:
    1997
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了