Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
基本信息
- 批准号:17540043
- 负责人:
- 金额:$ 2.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Frobenius endomorphism hi characteristic p > 0 is a very powerful tool in commutative ring theory as well as singularity theory or algebraic geometry iover a field of characteristic 0 via reduction mod p.We applied the Frobenius endomorphism to various problems in commutative algebra and singularity theory. Inparticular, we showed the followings ;1. F-thresholds ; F-threshold is defined in a Noetherian ring of characteristic p>0 to a pair (I,J) of two ideals of A.This notion was originally introduced to describe multiplier ideals and jumping numbers in a regular local ring. But in our research, it turned out that this notion is closely related to tight closures and integral closures and also we have a nice conjecture concerning F-threshold and multiplicity of a parameter ideal.2. Multi-graded rings, rational singularity and F-rational rings ;The notion of multi-graded rings and their diagonal algebras is a very interesting object and very useful in making many interesting examples. In a joint paper with A Singh and E. Sato, K. Kurano and K. Watanabe made a new example with discrete divisor class group whose local cohomology modules shows very interesting feature. Also we showed a criterion for diagonal subalgebras of multi-graded hypersurfaces to be f-rational or F-regular in terms of the degree.3. Totally reflexive modules ;In the theory of totally reflexive modules, examples of non-trivial totally reflexive modules are very few. Watanabe and R. Takahashi constructed a family of non-trivial totally reflexive modules using geometry of curves of genus greater than 1. This is the first case that algebraic geometry is used in this theory.
特征p > 0的Frobenius自同态是交换环理论、奇点理论或特征为0的域上代数几何中通过模p约化的一个非常有力的工具。具体而言,我们展示了以下内容:1。F-阈值;定义了特征p>0的Noether环中A的两个理想对(I,J)的F-阈值。这个概念最初是用来描述正则局部环中的乘子理想和跳跃数的。但在我们的研究中,发现这个概念与紧闭包和积分闭包密切相关,并且我们对参数理想的F-阈值和重数有一个很好的猜想.多重分次环、有理奇异性和F-有理环;多重分次环及其对角代数的概念是一个非常有趣的对象,在制作许多有趣的例子时非常有用。在与A Singh和E.佐藤角Kurano和K. Watanabe给出了一个新的例子,离散除子群的局部上同调模表现出非常有趣的特征。给出了多重分次超曲面的对角子代数是f-有理或F-正则的一个度判据.全自反模:在全自反模理论中,非平凡全自反模的例子很少。Watanabe和R. Takahashi利用亏格大于1的曲线几何构造了一类非平凡的全自反模。这是第一个情况下,代数几何是在这个理论中使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Totally reflexive modules constructed from smooth projective curves of genus g ≥ 2
- DOI:10.1007/s00013-007-2004-y
- 发表时间:2006-01
- 期刊:
- 影响因子:0.6
- 作者:Ryo Takahashi;Kei-ichi Watanabe
- 通讯作者:Ryo Takahashi;Kei-ichi Watanabe
Formulas for multiplier ideals on singular varieties
奇异品种乘数理想公式
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Shunsuke;Takagi
- 通讯作者:Takagi
Another proof of theorems of De Cocini and Procesi,
De Cocini 和 Procesi 定理的另一个证明,
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S.Noh;K.Watanabe;K.Kurano;S.Takagi;N.Hara;M.Hashimoto
- 通讯作者:M.Hashimoto
A characteristic p analog of multiplier ideals and applications.
乘法器理想和应用的特征 p 模拟。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:B.Gordon;M.Hanamura;J.P.Murre;N.Hara
- 通讯作者:N.Hara
F-thresholds-application to lc thresholds and a conjectur on multiplicity
F 阈值在 lc 阈值中的应用和多重性猜想
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:K.;Watanabe;K. Watanabe
- 通讯作者:K. Watanabe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Keiichi其他文献
WATANABE Keiichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Keiichi', 18)}}的其他基金
A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
- 批准号:
18K01184 - 财政年份:2018
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
- 批准号:
15K16907 - 财政年份:2015
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
- 批准号:
26400053 - 财政年份:2014
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
- 批准号:
22530348 - 财政年份:2010
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
- 批准号:
21720328 - 财政年份:2009
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
- 批准号:
16530231 - 财政年份:2004
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
- 批准号:
15380074 - 财政年份:2003
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Commutative ring theory and singularity theory
交换环理论和奇点理论
- 批准号:
13440015 - 财政年份:2001
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
- 批准号:
10640042 - 财政年份:1998
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
- 批准号:
09044335 - 财政年份:1997
- 资助金额:
$ 2.47万 - 项目类别:
Grant-in-Aid for international Scientific Research