Characteristic p method in singularity theory
奇点理论中的特征p法
基本信息
- 批准号:10640042
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We applied "characteristic p" methods to singularity theory and obtained the fokkowing results.1 Characterization of Singularities in Characteristic 0 via Frobenius endomorphism. We found that log-terminal singularity and F-regular rings are equivalent notions in the case the ring is Q- Gorenstein. The same is true for rational singularities and F-rational rings. Also, we found that the same is true for "singularity of pairs" (KLT, PLT etc.). The latter result is a joint work with N.Hara.2 The notion of "Hilbert-Kunz multiplicity", which is a new "multiplicity" for local rings. We characterized regular local rings, certain rational singularities in dimension 2 by this multiplicity. Also we found a very beautiful and mysterious formula for integrally closed ideals in 2-dimensional rational double points. (a joint work with K.Yoshida)3 We investigated chains of integrally closed ideals and found the existence of a composition series only by integrally closed ideals. We found that the family of integrally closed ideals of colength 1 corresponds to the closed points of the fiber cone. Also, we found a new characterization of simple integrally closed ideals in 2-dimensional regular local rings. (The last result is a joint work with S.Noh.)
我们将“特征p”方法应用于奇异性理论,得到了一些有意义的结果:1利用Frobenius自同态刻画特征0中的奇异性。我们发现当环是Q-Gorenstein环时,对数-终端奇点与F-正则环是等价的。对于有理奇点和F-有理环也是如此。此外,我们发现,同样是真实的“奇点对”(KLT,PLT等)。后一个结果是与N.Hara.2的联合工作。“Hilbert-Kunz多重性”的概念,这是局部环的一个新的“多重性”。我们刻画了正则局部环,某些有理奇点在2维的这个多重性。我们还发现了二维有理双点中的整闭理想的一个非常美丽而神秘的公式。(一个联合工作与吉田)3我们调查链的整体封闭的理想,并发现存在的一个组成系列只由整体封闭的理想。我们发现,族的整闭理想的色长为1对应的封闭点的纤维锥。同时,我们还得到了2维正则局部环中单整闭理想的一个新的刻画。(The最后的成果是与S. Noh的合作。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Hara and K.Watanale: "F-regular and F-puse rings vs log-terminal and log-canonical singularities"J.of Algelraic Geometry. (To appear).
N.Hara 和 K.Watanale:“F-正则环和 F-puse 环与对数终端和对数规范奇点”J.of Algelraic Geometry。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Katsura Miyazaki and Kimihiko MOTEGI: "Toroidal surgery on periodic knots"Pacific J.Math.. 193. 381-396 (2000)
Katsura Miyazaki 和 Kimihiko MOTEGI:“周期性结的环形手术”Pacific J.Math.. 193. 381-396 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K Watanabe and K.Yoshida: "Hilbert-Kunz multiplicity of two-dimensional local rings" J.of pure and applied Algebra. 未定. 未定 (1999)
K Watanabe 和 K. Yoshida:“二维局部环的 Hilbert-Kunz 重数”J.of 纯代数和应用代数 待定(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Mori: "Higher order mixing property of piecewise linear transformations"Discrete and Continuous Dynamical systems,. vol6,No4. 915-934 (2000)
M.Mori:“分段线性变换的高阶混合特性”离散和连续动力系统,。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuo HARA and Kei-ichi WATANABE: "F-regular and F-pure Rings vs. Log-terminal and Log-canonical Singularities"J.of Alg.Geom. (to appear).
Nobuo HARA 和 Kei-ichi WATANABE:“F-正则环和 F-纯环与对数末端和对数规范奇点”J.of Alg.Geom。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Keiichi其他文献
WATANABE Keiichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Keiichi', 18)}}的其他基金
A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
- 批准号:
18K01184 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
- 批准号:
15K16907 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
- 批准号:
26400053 - 财政年份:2014
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
- 批准号:
22530348 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
- 批准号:
21720328 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
- 批准号:
17540043 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
- 批准号:
16530231 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
- 批准号:
15380074 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Commutative ring theory and singularity theory
交换环理论和奇点理论
- 批准号:
13440015 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
- 批准号:
09044335 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似海外基金
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Research on rational singularities and almost Gorenstein blow-up algebras
有理奇点和几乎Gorenstein爆炸代数的研究
- 批准号:
16K05110 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rational singularities, de Rham-Witt sheaves and reciprocity functors
有理奇点、德拉姆-维特滑轮和互易函子
- 批准号:
253064429 - 财政年份:2014
- 资助金额:
$ 2.18万 - 项目类别:
Heisenberg Fellowships
Log Canonical and Rational Singularities
对数规范奇点和有理奇点
- 批准号:
0196072 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Log Canonical and Rational Singularities
对数规范奇点和有理奇点
- 批准号:
9818357 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Rational singularities, Young diagram, Painleve equation
有理奇点、Young 图、Painleve 方程
- 批准号:
11440006 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebro-geometric studies of rational singularities and related singularities by blowing-ups
通过爆炸对有理奇点和相关奇点进行代数几何研究
- 批准号:
09640021 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)